1+2+3+....+ n < 1/8 (2n +1) square
rakeshmohata:
n?
Answers
Answered by
16
here's your answer
hope it helps
hope it helps
Attachments:
![](https://hi-static.z-dn.net/files/d89/9c683b955b56c945a5cd45769d0a911d.jpg)
Answered by
6
Hope u like my process
=====================
=> sum of the series
![1 + 2 + 3 + 4 + .... + n = \frac{n(n + 1)}{2} 1 + 2 + 3 + 4 + .... + n = \frac{n(n + 1)}{2}](https://tex.z-dn.net/?f=1+%2B+2+%2B+3+%2B+4+%2B+....+%2B+n+%3D++%5Cfrac%7Bn%28n+%2B+1%29%7D%7B2%7D+)
__________________________
Now,
=-=-=-=
![= > \frac{(2n + 1) ^{2} }{8} \\ \\ = \frac{4 {n}^{2} + 4n + 1}{8} \\ \\ = \frac{4 {n}^{2} + 4n }{8} + \frac{1}{8} \\ \\ = \frac{4n(n + 1)}{8} + \frac{1}{8} \\ \\ = \frac{n(n + 1)}{2} + \frac{1}{8} \\ \\ = 1 + 2 + 3 + 4 + ... + n + \frac{1}{8} = > \frac{(2n + 1) ^{2} }{8} \\ \\ = \frac{4 {n}^{2} + 4n + 1}{8} \\ \\ = \frac{4 {n}^{2} + 4n }{8} + \frac{1}{8} \\ \\ = \frac{4n(n + 1)}{8} + \frac{1}{8} \\ \\ = \frac{n(n + 1)}{2} + \frac{1}{8} \\ \\ = 1 + 2 + 3 + 4 + ... + n + \frac{1}{8}](https://tex.z-dn.net/?f=+%3D++%26gt%3B++%5Cfrac%7B%282n+%2B+1%29+%5E%7B2%7D+%7D%7B8%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7B4+%7Bn%7D%5E%7B2%7D++%2B+4n+%2B+1%7D%7B8%7D++%5C%5C++%5C%5C+++%3D++%5Cfrac%7B4+%7Bn%7D%5E%7B2%7D+%2B+4n+%7D%7B8%7D++%2B++%5Cfrac%7B1%7D%7B8%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7B4n%28n+%2B+1%29%7D%7B8%7D++%2B++%5Cfrac%7B1%7D%7B8%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7Bn%28n+%2B+1%29%7D%7B2%7D++%2B++%5Cfrac%7B1%7D%7B8%7D++%5C%5C++%5C%5C++%3D+1+%2B+2+%2B+3+%2B+4+%2B+...+%2B+n+%2B++%5Cfrac%7B1%7D%7B8%7D+)
Thus now..
It can be proved that..
![1 + 2 + 3 + 4 + .... + n < \frac{ {(2n + 1)}^{2} }{8} 1 + 2 + 3 + 4 + .... + n < \frac{ {(2n + 1)}^{2} }{8}](https://tex.z-dn.net/?f=1+%2B+2+%2B+3+%2B+4+%2B+....+%2B+n+%26lt%3B++%5Cfrac%7B+%7B%282n+%2B+1%29%7D%5E%7B2%7D+%7D%7B8%7D+)
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
Hope this is ur required answer
Proud to help you
=====================
=> sum of the series
__________________________
Now,
=-=-=-=
Thus now..
It can be proved that..
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
Hope this is ur required answer
Proud to help you
Similar questions