Math, asked by dhanush2274, 3 months ago

1 2
3. Use Cayley - Hamilton theorem, to obtain A^4 - 4A^3 - 5A^2 + A+ 2I when A =(1. 2
4. 3)​

Answers

Answered by MaheswariS
5

\textbf{Given:}

\mathsf{A=\left(\begin{array}{cc}1&2\\4&3\end{array}\right)}

\textbf{To find:}

\mathsf{A^4-4A^3-5A^2+A+2I}

\textbf{Solution:}

\textbf{Cayley-Hamilton theorem:}

\boxed{\textsf{Every square matrix satisfies its characteristic equation}}

\textsf{The charateristic equation of A is}

\mathsf{|A-mI|=0}

\mathsf{\left|\left(\begin{array}{cc}1&2\\4&3\end{array}\right)-m\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\left|=0}

\mathsf{\left|\left(\begin{array}{cc}1&2\\4&3\end{array}\right)-m\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\right|=0}

\mathsf{\left|\begin{array}{cc}1-m&2\\4&3-m\end{array}\right|=0}

\implies\mathsf{(1-m)(3-m)-8=0}

\implies\mathsf{m^2-4m+3-8=0}

\implies\boxed{\mathsf{m^2-4m-5=0}}

\textsf{Using Cayley-Hamilton theorem, we get,}\;\mathsf{A^2-4A-5I=\bf\,0}........(1)

\mathsf{Now,}

\mathsf{A^4-4A^3-5A^2+A+2I}

\mathsf{=A^2(A^2-4A-5AI)+A+2I}

\mathsf{=A^2(\bf\,0)+A+2I}

\mathsf{=\bf\,0+\left(\begin{array}{cc}1&2\\4&3\end{array}\right)+2\left(\begin{array}{cc}1&0\\0&1\end{array}\right)}

\mathsf{=\left(\begin{array}{cc}1&2\\4&3\end{array}\right)+\left(\begin{array}{cc}2&0\\0&2\end{array}\right)}

\mathsf{=\left(\begin{array}{cc}3&2\\4&5\end{array}\right)}

\implies\boxed{\mathsf{A^4-4A^3-5A^2+A+2I=\left(\begin{array}{cc}3&2\\4&5\end{array}\right)}}

Answered by kt1080376
1

(970658064004)905478903

Similar questions