Math, asked by jakkusuma28, 6 months ago

(-1/2)^5/(-1/2)^4+(-1/8)/(-1/4) the value is​

Answers

Answered by swethassynergy
0

the value  of the     \frac{(-\frac{1}{2} )^{5} }{(-\frac{1}{2} )^{4} } +\frac{(-\frac{1}{8} )}{(-\frac{1}{4}) }    is 0.

Step-by-step explanation:

Given:

\frac{(-\frac{1}{2} )^{5} }{(-\frac{1}{2} )^{4} } +\frac{(-\frac{1}{8} )}{(-\frac{1}{4}) }

To Find:

The value  of the   \frac{(-\frac{1}{2} )^{5} }{(-\frac{1}{2} )^{4} } +\frac{(-\frac{1}{8} )}{(-\frac{1}{4}) } .

Formula Used:

Multiply the nominators and multiply the denominators to  multiply the fractions.

\frac{P}{Q} X\frac{M}{N} =\frac{PM}{QN}

To divide one fraction by another fraction flip the second fraction and multiply with first fraction.

\frac{\frac{P}{Q} }{\frac{N}{M} } =\frac{P}{Q} X\frac{M}{N} =\frac{PM}{QN}

Solution:

\frac{(-\frac{1}{2} )^{5} }{(-\frac{1}{2} )^{4} } +\frac{(-\frac{1}{8} )}{(-\frac{1}{4}) }  

=(-\frac{1}{2} )^{5} X(-\frac{2}{1} )^{4} +(-\frac{1}{8} )X(-\frac{4}{1} )

= 0

                                                                                                   

Thus, the value  of the       \frac{(-\frac{1}{2} )^{5} }{(-\frac{1}{2} )^{4} } +\frac{(-\frac{1}{8} )}{(-\frac{1}{4}) }    is 0.

Similar questions