Math, asked by kaushik0206, 1 year ago

1/2×5+1/5×8+1/8×11+.....+1/(3n-1)(3n+1)=n/6n+4 prove by mathematical induction
PLS ANS FAST​

Answers

Answered by shadowsabers03
10

A small mistake in the question. Actually we have to prove,

\displaystyle P(n)\ :\ \sum_{i=1}^{n}\dfrac{1}{(3i-1)(3i+2)}\ =\ \dfrac{n}{6n+4}

\cline{1-}

Put n = 1.  Let's know whether P(1) is correct.

\textsf{LHS\ $=\dfrac{1}{2\cdot 5}=\dfrac{1}{10}=\dfrac{1}{6+4}=$\ RHS}

Hence P(1) is true. So we can assume that P(k) is true.

\textsf{Assume\ \ $P(k)\ :\ \displaystyle \sum_{i=1}^{k}\dfrac{1}{(3i-1)(3i+2)}\ =\ \dfrac{k}{6k+4}$\ \ is true.}

Now we are assuming P(k+1).

\begin{aligned}&\textsf{LHS}\\ \\ \Longrightarrow\ \ &\sum_{i=1}^{k+1}\dfrac{1}{(3i-1)(3i+2)}\\ \\ \Longrightarrow\ \ &\sum_{i=1}^{k}\dfrac{1}{(3i-1)(3i+2)}+\dfrac{1}{(3(k+1)-1)(3(k+1)+2)}\\ \\ \Longrightarrow\ \ &\dfrac{k}{6k+4}+\dfrac{1}{(3k+3-1)(3k+3+2)}\\ \\ \Longrightarrow\ \ &\dfrac{k}{2(3k+2)}+\dfrac{1}{(3k+2)(3k+5)}\\ \\ \Longrightarrow\ \ &\dfrac{1}{3k+2}\left(\dfrac{k}{2}+\dfrac{1}{3k+5}\right)\end{aligned}

\begin{aligned}\Longrightarrow\ \ &\dfrac{1}{3k+2}\left(\dfrac{k(3k+5)+2}{2(3k+5)}\right)\\ \\ \Longrightarrow\ \ &\dfrac{1}{3k+2}\left(\dfrac{3k^2+5k+2}{6k+10}\right)\\ \\ \Longrightarrow\ \ &\dfrac{1}{3k+2}\left(\dfrac{3k^2+3k+2k+2}{6k+6+4}\right)\\ \\ \Longrightarrow\ \ &\dfrac{1}{3k+2}\left(\dfrac{3k(k+1)+2(k+1)}{6(k+1)+4}\right)\\ \\ \Longrightarrow\ \ &\dfrac{1}{3k+2}\left(\dfrac{(3k+2)(k+1)}{6(k+1)+4}\right)\\ \\ \Longrightarrow\ \ &\dfrac{k+1}{6(k+1)+4}\end{aligned}

\begin{aligned}\\ \\ \Longrightarrow\ \ &\dfrac{n}{6n+4}\\ \\ \Longrightarrow\ \ &\textsf{RHS}\end{aligned}

Hence Proved!

Similar questions