Physics, asked by sidra261007, 2 months ago

1/2 i + 1/2 j + c k then the value of c is​

Answers

Answered by AestheticSky
17

  \bigstar\large \underline \pink{ \pmb{ \sf Correct  \: Question }} \bigstar

if  \sf  \dfrac{1}{2}\hat{i} +  \dfrac{1}{2}  \hat{j} + c \hat{k} is a unit vector, then find the value of c.

 \:  \:  \:  \:  \:  \:  \dag  \underline{ \sf According \:  to \:  the  \: question :  - }

 \sf  \dfrac{1}{2}\hat{i} +  \dfrac{1}{2}  \hat{j} + c \hat{k} is a unit vector.

● which means that the magnitude of this vector is 1.

● We are asked to calculate the value of c.

● We know that, the magnitude of a vector represented in its component form is calculated by:-

 \leadsto \underline {\boxed {\pink{{ \bf | \overrightarrow{A} | =  \sqrt{ {A_x}^{2}  +  {A_y}^{2}  +  {A_ z}^{2} } }}}} \bigstar

● Where, Ax, Ay and Az are the components of A vector along x, y and z axis respectively.

  • Ax = \sf\dfrac{1}{2}

  • Ay = \sf \dfrac{1}{2}

  • Az = c

  • |A| = 1

  \:  \:  \:  \:  \:  \:  \dag\underline{ \frak{substituting \: these \: values \: in \: formula:-}}

  : \implies  \sf 1 =  \sqrt{  \bigg({ \dfrac{1}{2} } \bigg)^{2}  +   \bigg({ \dfrac{1}{2} } \bigg)^{2}  +  {c}^{2}  }

 :  \implies \sf 1 =  \dfrac{1}{4}  +  \dfrac{1}{4}  + c²

 :  \implies \sf 1 =  \dfrac{1}{2}  + c²

  : \implies {\boxed {\pink{ {\frak c =  \frac{1}{\sqrt{2}}  }}}} \bigstar

I hope u got what u were looking for :D


Anonymous: Good !
Answered by Anonymous
17

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\underline{\blacksquare\:\:\:\footnotesize{\red{\text{SOLUTION:-}}}}

\footnotesize{ \maltese \: \sf Let,  \underline{\overrightarrow{A} = \dfrac{1}{2} \hat{i} +\dfrac{1}{2} \hat{j} + c \hat{k} } }  \: \maltese\\

\footnotesize{ \maltese  \: \underline{ \boxed{  \sf Where \:  \overrightarrow{A}  \: is  \: a  \: unit \:  vector .} }}  \: \maltese\\

\footnotesize{ \maltese  \: \underline{ \boxed{  \sf  \overrightarrow{A}   = 1} }}  \: \maltese\\

\longrightarrow \: \sf |\overrightarrow{A} | = \sqrt{x^2 + y^2 + z^2} \\

Where,

\footnotesize{ \maltese  \:    \: \sf  x : co-efficient  \: of \:  \hat{i}}  \:  \: \maltese\\

\footnotesize{ \maltese  \:    \: \sf  y : co-efficient  \: of \:  \hat{j}}  \:  \: \maltese\\

\footnotesize{ \maltese  \:    \: \sf  z : co-efficient  \: of \:  \hat{k}}  \:  \: \maltese\\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow \: \sf1 = \sqrt{\left( \frac{1}{2} \right) ^2 +\left( \frac{1}{2} \right) ^2  + (C)^2} \\

\longrightarrow \: \sf1 = \sqrt{\frac{1}{4}  +\frac{1}{4}   + (C)^2} \\

\longrightarrow \: \sf1 = \frac{1}{4}  +\frac{1}{4}   + (C)^2\\

\longrightarrow \: \sf1 = \frac{4 + 4}{4\times 4}    + (C)^2\\

\longrightarrow \: \sf1 = \frac{8}{16}  + (C)^2\\

\longrightarrow \: \sf1 = \frac{8 \div 4}{16 \div 4}  + (C)^2\\

\longrightarrow \: \sf1 = \frac{2}{4}  + (C)^2\\

\longrightarrow \: \sf1 = \frac{1}{2}  + (C)^2\\

\longrightarrow \: \sf (C)^2 = 1 - \frac{1}{2}  \\

\longrightarrow \: \sf (C)^2 =  \frac{2-1}{2} \\

\longrightarrow \: \sf (C)^2 =  \frac{1}{2} \\

\longrightarrow \:  \underline{ \underline{\sf C=   \dfrac{1}{\sqrt{2}}}}  \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Similar questions