Math, asked by qwerty09813, 3 months ago

1/2+root3 + 1/2-root3​. plz answer

Answers

Answered by snehitha2
11

Answer:

1/2 + √3 + 1/2 - √3​ = 4

Step-by-step explanation:

Let

x = 1/2+√3

y = 1/2 - √3

  • We have to find the value of (x + y)

Find the value of x :

Rationalizing factor = 2 - √3

Multiply and divide the fraction by (2 - √3)

 \sf x=\dfrac{1}{2+\sqrt{3}} \times \dfrac{2-\sqrt{3}}{2-\sqrt{3}} \\\\\\ \sf x=\dfrac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})} \\\\\\ \sf x=\dfrac{2-\sqrt{3}}{2(2-\sqrt{3})+\sqrt{3}(2-\sqrt{3})} \\\\\\ \sf x=\dfrac{2-\sqrt{3}}{4-2\sqrt{3}+2\sqrt{3}-\sqrt{3}^2} \\\\\\ \sf x=\dfrac{2-\sqrt{3}}{4-3} \\\\ \sf x=\dfrac{2-\sqrt{3}}{1} \\\\ \sf x=2-\sqrt{3}

Find the value of y :

Rationalizing factor = 2 + √3

Multiply and divide the fraction by (2 + √3)

 \sf y=\dfrac{1}{2-\sqrt{3}} \times \dfrac{2+\sqrt{3}}{2+\sqrt{3}} \\\\\\ \sf y=\dfrac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})} \\\\\\ \sf y=\dfrac{2+\sqrt{3}}{2(2+\sqrt{3})-\sqrt{3}(2+\sqrt{3})} \\\\\\ \sf y=\dfrac{2+\sqrt{3}}{4+2\sqrt{3}-2\sqrt{3}-\sqrt{3}^2} \\\\\\ \sf y=\dfrac{2+\sqrt{3}}{4-3} \\\\ \sf y=\dfrac{2+\sqrt{3}}{1} \\\\ \sf y=2+\sqrt{3}

➣ x = 2 - √3

➣ y = 2 + √3

➟ x + y

➟ 2 - √3 + 2 + √3

➟ 2 + 2

➟ 4

Therefore, 1/2 + √3 + 1/2 - √3​ = 4


Anonymous: hi
Anonymous: rey me
mudasirahmad96229677: nice
mudasirahmad96229677: excellent
Answered by MagicalLove
74

Step-by-step explanation:

 \boldsymbol {\huge{Solution:-}}

 \implies  \red{ \dfrac{1}{2 +  \sqrt{3} }  +  \dfrac{1}{2 -  \sqrt{3} } }

Cross multiply and we know that,

(a+b)(a-b) = a²-b²

 \implies \green{ \dfrac{2 -  \sqrt{3} + 2 +  \sqrt{3}  }{ {2}^{2} -  {( \sqrt{3} )}^{2}  } }

 \implies \green { \dfrac{4}{4 - 3} }

 \implies \green{4}

 \boldsymbol  {\huge{\pink{{  \therefore \: \dfrac{1}{2 +  \sqrt{3} }  +  \dfrac{1}{2 -  \sqrt{3} } } = 4}}}

Make it easy !!!


Darshinicute: hi
Similar questions