1/2+root3 +2/root5-root3 +1/2-root5 =0
Answers
Answered by
1
Answer:
Hi ,
a ) 1/ ( 2 + √3 )
= ( 2 - √3 ) / [( 2 + √3 ) ( 2 - √3 )]
= ( 2 - √3 ) / [ 4 - 3 ]
= 2 - √3 ---( 1 )
b ) 2 / ( √5 - √3 )
= 2 ( √5 + √3 ) / [ ( √5 - √3 )(√5 + √3 ) ]
= 2( √5 + √3 ) / ( 5 - 3 )
= 2 ( √5 + √3 )/ 2
= √5 + √3 ----( 2 )
c ) 1/( 2 - √5 )
= ( 2 + √5 ) / [ ( 2 - √5 ) ( 2 + √5 ) ]
= ( 2 + √5 ) / [ 4 - 5 ]
√= - ( 2 + √5 ) ---- ( 3 )
according to the problem given ,
( 1 ) + ( 2 ) + ( 3 )
= 2 - √3 + √5 + √3 - ( 2 + √5 )
= 2 - √3 + √5 + √3 - 2 - √5
= 0
I hope this helps you.
Answered by
1
Step-by-step explanation:
Given question :
1 2 1
____ + _____ + _____ = 0
2+√3 √5-√3 2-√5
Answer :
First we have to rationalize the denominator.
1 1 2-√3 2-√3 2-√3
____ = ____ × _____ = _____ = _____
2+√3 2+√3 2-√3 2²-√3² 4-3
= 2-√3
2 2 √5+√3 2√5+2√3
_____ = _____ × ______ = _________
√5-√3 √5-√3 √5+√3 5 - 3
= 2√5+2√3 / 2 = √5+√3
1 1 2+√5 2+√5 - (2+√5)
____ = ____ × ____ = _____ = ______
2-√5 2-√5 2+√5 4 - 5 1
= - 2 - √5
By substituting;
2-√3 + √5+√3 -2-√5 = 0
(2,-2 cancels and √3,-√3 cancels and √5,-√5 cancels)
0 = 0
Similar questions