Math, asked by rashrachana25, 9 months ago

1/2{sinteta/1+costeta+1+costeta/sinteta}=1/sinteta

Attachments:

Answers

Answered by anitamallick2005
1

Answer:

If you liked and understood my answer pls Mark me brainliest...Thank you

Attachments:
Answered by DrNykterstein
4

We have to prove the following equation.

 \quad \displaystyle  \bf \frac{1}{2} \bigg\{\frac{sin\:\theta}{1 + cos\:\theta}+\frac{1 + cos\:\theta}{sin\:\theta}\bigg\} = \frac{1}{sin\theta}

 \\

 \sf Solving \: L.H.S \: separately

 =  \quad \displaystyle \bf  \frac{1}{2}\bigg\{\frac{sin \:  \theta}{1 + cos \:  \theta} +  \frac{1 + cos \:  \theta}{sin  \: \theta} \bigg\} \\ \\

  =  \quad \displaystyle \bf \frac{1}{2}\bigg\{ \frac{ {(sin \:  \theta)}^{2} +  {(1 + cos \:  \theta)}^{2}  }{sin \:  \theta(1 + cos \:  \theta)}\bigg\} \\  \\

 = \displaystyle \bf  \quad  \frac{1}{2} \bigg\{  \frac{ {sin}^{2} \theta  +  {1}^{2} +  {cos}^{2}\theta  + 2cos \theta }{sin \theta(1 + cos \theta)}  \bigg\} \\  \\

=  \displaystyle \quad \bf  \frac{2 + 2cos \theta}{2sin \theta(1 + cos \theta)}  \qquad  \bigg( \because  {sin}^{2} \theta  +  {cos}^{2} \theta = 1   \bigg)\\ \\

 =  \displaystyle \quad \bf  \frac{ \not{2} \cancel{(1 + cos \theta)}}{ \not{2}sin \theta \cancel{(1 + cos \theta)}}  \\  \\

 =  \displaystyle \quad  \bf  \frac{1}{sin \theta}  \\  \\

Since, L.H.S = R.H.S

Hence, Proved.

Formulae are must, So better learn and remember them. If you get in any other question like this, Try converting terms into sine and cosine.

 \\

Some Formulae :-

sin² θ + cos² θ = 1

1 + tan² θ = sec² θ

1 + cot² θ = cosec² θ

sin (A + B) = sinAcosB + cosAsinB

sin 2θ = 2sinθcosθ

1 + cos θ = 2 cos² θ/2

1 - cos θ = 2 sin² θ/2

Similar questions