Math, asked by vadanyasinghbhati, 1 month ago

1/(2 - sqrt(3)) - 1/(sqrt(3) + sqrt(2)) + 5/(3 - sqrt(2))​

Answers

Answered by amitnrw
11

Given :    \dfrac{1}{2-\sqrt{3} } -\dfrac{1}{\sqrt{3}+\sqrt{2} }+\dfrac{5}{3-\sqrt{2} }

To find : Simplify

Solution:

 \dfrac{1}{2-\sqrt{3} } -\dfrac{1}{\sqrt{3}+\sqrt{2} }+\dfrac{5}{3-\sqrt{2} }

Let simplify each term by rationalization one by one

 \dfrac{1}{2-\sqrt{3} }  \times \dfrac{2+\sqrt{3}}{2+\sqrt{3} }=2+\sqrt{3}

 \dfrac{1}{\sqrt{3}+\sqrt{2} } \times  \dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2} } =\sqrt{3}-\sqrt{2}

 \dfrac{5}{3-\sqrt{2} } \times \dfrac{3+\sqrt{2} }{3+\sqrt{2} } =3+\sqrt{2}

 \dfrac{1}{2-\sqrt{3} } -\dfrac{1}{\sqrt{3}+\sqrt{2} }+\dfrac{5}{3-\sqrt{2} }

= 2 + √3  - ( √3 - √2)  +  3 + √2

= 2 + √2 +  3 + √2

= 5 + 2√2

\dfrac{1}{2-\sqrt{3} } -\dfrac{1}{\sqrt{3}+\sqrt{2} }+\dfrac{5}{3-\sqrt{2} }   = 5 + 2√2

Learn More

rationalize the denominator of 4root3/5root5 and hence find their ...

brainly.in/question/17248397

(a) Rationalize the denominator: 14/ 5√3 − √5 Please Send solutions

brainly.in/question/5471829

Answered by satyavenikarri33
1

Answer:

first rationalise

after rationalise another one

then soon getting answers substitution the values

the answer is readey

Attachments:
Similar questions