√1+2008√1+2009√1+2010√1+2011.2013
Answers
Answer:
√(1 + (2008(√1 + (2009(√1 + (2010√(1 + (2011.2013)))))))
= 2009
Step-by-step explanation:
We have,
√(1 + (2008(√1 + (2009(√1 + (2010√(1 + (2011.2013)))))))
We know that,
(x + y)(x - y) = x² - y²
Then,
We know that,
2011 × 2013 = (2012 - 1)(2012 + 1)
= (2012² - 1²)
So,
√(1 + (2008(√1 + (2009(√1 + (2010√(1 + (2011.2013)))))))
= √(1 + (2008(√1 + (2009(√1 + (2010√(1 + 2012² - 1²))))))
= √(1 + (2008(√1 + (2009(√1 + (2010√(1 + 2012² - 1))))))
= √(1 + (2008(√1 + (2009(√1 + (2010√(1 - 1 + 2012²))))))
= √(1 + (2008(√1 + (2009(√1 + (2010√(2012²))))))
= √(1 + (2008(√1 + (2009(√1 + (2010.2012)))))
Again Using the Identity,
= √(1 + (2008(√1 + (2009(√1 + (2011² - 1²)))))
= √(1 + (2008(√1 + (2009(√1 + (2011² - 1)))))
= √(1 + (2008(√1 + (2009(√1 - 1 + 2011²))))
= √(1 + (2008(√1 + (2009(√2011²))))
= √(1 + (2008(√1 + (2009.2011))))
Again Using the Identity,
= √(1 + (2008(√1 + (2010² - 1²))))
= √(1 + (2008(√1 + (2010² - 1))))
= √(1 + (2008(√1 - 1 + 2010²)))
= √(1 + (2008(√2010²)))
= √(1 + (2008.2010))
Again Using the Identity,
= √(1 + (2009² - 1²))
= √(1 + (2009² - 1))
= √(1 - 1 + 2009²)
= √2009²
= 2009
Hence,
√(1 + (2008(√1 + (2009(√1 + (2010√(1 + (2011.2013)))))))
= 2009