Physics, asked by duragpalsingh, 4 months ago

1.24. A radius vector of a point A relative to the origin varies with
time t as r = ati — bt2 j, where a and b are positive constants, and i
and j are the unit vectors of the x and y axes. Find:
(a) the equation of the point's trajectory y (x); plot this function;
(b) the time dependence of the velocity v and acceleration w vectors,
as well as of the moduli of these quantities;
(c) the time dependence of the angle a between the vectors w and v;
(d) the mean velocity vector averaged over the first t seconds of
motion, and the modulus of this vector.

Answers

Answered by mathdude500
10

\large\underline{\bold{Solution-}}

  \underline{\bf \bold{ \: Answer \: (a)}}

It is given that

\rm :\longmapsto\:\vec{r} = a t \: \hat{i} - b {t}^{2} \:  \hat{j}

So,

  • On comparing with,

\rm :\longmapsto\:\vec{r} = x \: \hat{i} + y \:  \hat{j}

  • we get

\rm :\implies\:x = at \:  \: and \:  \: y =  - b {t}^{2}

  • Now, eliminate 't' from these two conditions,

\rm :\longmapsto\: \: as \: x = at \: \bf :\implies\:t = \dfrac{x}{a}

So,

\rm :\implies\:y =  - b \times \dfrac{ {x}^{2} }{ {a}^{2} }

\bf :\implies\:y =  - \dfrac{b {x}^{2} }{ {a}^{2} }

  • which is the equation of Parabola whose vertex is at the origin and shape downward.

  • . Please see the attachment for graph

  \underline{\bf \bold{ \: Answer \: (b)}}

We know,

\rm :\longmapsto\:\vec{v} \:  =  \: \dfrac{d}{dt} \vec{r}

and

\rm :\longmapsto\:\vec{w} = \dfrac{d}{dt} \vec{v}

As,

\rm :\longmapsto\:\vec{r} = a t \: \hat{i} - b {t}^{2} \:  \hat{j}

  • On differentiating with respect to 't', we get

\rm :\longmapsto\:\dfrac{d}{dr} \vec{r} = \dfrac{d}{dt} (a t \: \hat{i} - b {t}^{2} \:  \hat{j})

\bf :\longmapsto\:\vec{v} = a  \: \hat{i} - 2b {t} \:  \hat{j}

  • On differentiating with respect to 't', we get

\rm :\longmapsto\:\dfrac{d}{dt} \vec{v} = \dfrac{d}{dt} (a\: \hat{i} - 2b {t} \:  \hat{j})

\bf :\longmapsto\:\vec{w} =  - 2b \:  \hat{j}

Now,

\rm :\longmapsto\: |\vec{v}|  =  \sqrt{ {a}^{2}  +  {( - 2bt)}^{2} }

\bf\implies \: |\vec{v}|  =  \sqrt{ {a}^{2} +  {4b}^{2} {t}^{2}   }

And

\rm :\longmapsto\: |\vec{w}|  =  \sqrt{ {( - 2b)}^{2} }

\bf :\longmapsto\: |\vec{w}|  = 2b

  \underline{\bf \bold{ \: Answer \: (c)}}

We know,

To distinguish the angle 'a' with numeric constant 'a',

  • Let angle between two vectors be 'p'.

  • Angle between two vector is given by

\rm :\longmapsto\:cosp \:  = \dfrac{\vec{v} \: . \: \vec{w}}{ |\vec{v}| \:  |\vec{w}|  }

\rm :\longmapsto\:cosp \:  = \dfrac{(a\: \hat{i} - 2bt \:  \hat{j}) \: . \: ( - 2b \:  \hat{j})}{ \sqrt{ {a}^{2}  +  {4b}^{2} {t}^{2} } \times 2b }

\rm :\longmapsto\:cosp = \dfrac{ {4tb}^{2} }{ \sqrt{ {a}^{2}  +  {4b}^{2} {t}^{2}  } \times 2b }

\bf\implies \:cosp = \dfrac{2bt}{ \sqrt{ {a}^{2}  +  {4b}^{2} {t}^{2}  } }

As,

We know

\rm :\longmapsto\: {tan}^{2} p =  {sec}^{2} p - 1

\rm :\longmapsto\: {tan}^{2} p = \dfrac{ {a}^{2} + 4 {b}^{2} {t}^{2}   }{4 {b}^{2}  {t}^{2} }  - 1

\rm :\longmapsto\: {tan}^{2} p = \dfrac{ {a}^{2} + 4 {b}^{2} {t}^{2}  - 4 {b}^{2}  {t}^{2}}{4 {b}^{2}  {t}^{2} }

\rm :\longmapsto\: {tan}^{2} p = \dfrac{ {a}^{2}}{4 {b}^{2}  {t}^{2} }

\rm :\longmapsto\:tanp \:  =  \: \dfrac{a}{2bt}

\bf\implies \:p \:  =  \:  {tan}^{ - 1}  \bigg(\dfrac{a}{2bt}  \bigg)

  \underline{\bf \bold{ \: Answer \: (d)}}

The mean velocity vector is given by

\rm :\longmapsto\:\vec{ \overline{v}} = \dfrac{\int_0^t \: \vec{v} \: dt}{ \int \: dt}

\rm :\longmapsto\:\vec{ \overline{v}} = \dfrac{\int_0^t \: (a\: \hat{i} - 2bt \:  \hat{j}) \: dt}{ t}

\rm :\longmapsto\:\vec{ \overline{v}} = \dfrac{at\: \hat{i} - 2b \: \dfrac{ {t}^{2} }{2} \:  \hat{j} }{t}

\bf :\longmapsto\:\vec{ \overline{v}} = a\: \hat{i} - b {t} \: \hat{j}

Hence,

\rm :\longmapsto\: |\vec{ \overline{v}}  | =  \sqrt{ {a}^{2}  +  {( - bt)}^{2} }

\bf\implies \: |\vec{ \overline{v}}|  =  \sqrt{ {a}^{2} +  {b}^{2}  {t}^{2}  }

Attachments:
Answered by TanmayStatus
4

\large\underline{\bold{\red{Solution\downarrow}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\bf \bold{ \:\pink{ Answer \: (a)\downarrow}}}

It is given that

\rm :\longmapsto\:\vec{r} = a t \: \hat{i} - b {t}^{2} \: \hat{j}

So,

  • On comparing with,

\rm :\longmapsto\:\vec{r} = x \: \hat{i} + y \: \hat{j}

  • we get

\rm :\implies\:x = at \: \: and \: \: y = - b {t}^{2}

  • Now, eliminate 't' from these two conditions,

\rm :\longmapsto\: \: as \: x = at \: \bf :\implies\:t = \dfrac{x}{a}

So,

\rm :\implies\:y = - b \times \dfrac{ {x}^{2} }{ {a}^{2} }

\bf :\implies\:y = - \dfrac{b {x}^{2} }{ {a}^{2} }

  • which is the equation of Parabola whose vertex is at the origin and shape downward.
  • Please see the attachment for graph.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\bf \bold{ \:\green{ Answer \: (b)\downarrow}}}

We know,

\rm :\longmapsto\:\vec{v} \: = \: \dfrac{d}{dt} \vec{r}

and

\rm :\longmapsto\:\vec{w} = \dfrac{d}{dt} \vec{v}

As,

\rm :\longmapsto\:\vec{r} = a t \: \hat{i} - b {t}^{2} \: \hat{j}

  • On differentiating with respect to 't', we get

\rm :\longmapsto\:\dfrac{d}{dr} \vec{r} = \dfrac{d}{dt} (a t \: \hat{i} - b {t}^{2} \: \hat{j})

\bf :\longmapsto\:\vec{v} = a \: \hat{i} - 2b {t} \: \hat{j}

  • On differentiating with respect to 't', we get

\rm :\longmapsto\:\dfrac{d}{dt} \vec{v} = \dfrac{d}{dt} (a\: \hat{i} - 2b {t} \: \hat{j})

\bf :\longmapsto\:\vec{w} = - 2b \: \hat{j}

Now,

\rm :\longmapsto\: |\vec{v}| = \sqrt{ {a}^{2} + {( - 2bt)}^{2} }

\bf\implies \: |\vec{v}| = \sqrt{ {a}^{2} + {4b}^{2} {t}^{2} }

And

\rm :\longmapsto\: |\vec{w}| = \sqrt{ {( - 2b)}^{2} }

\bf :\longmapsto\: |\vec{w}| = 2b

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\bf \bold{ \:\purple{ Answer \: (c)\downarrow}}}

We know,

To distinguish the angle 'a' with numeric constant 'a',

  • Let angle between two vectors be 'p'.
  • Angle between two vector is given by

\rm :\longmapsto\:cosp \: = \dfrac{\vec{v} \: . \: \vec{w}}{ |\vec{v}| \: |\vec{w}| }

\rm :\longmapsto\:cosp \: = \dfrac{(a\: \hat{i} - 2bt \: \hat{j}) \: . \: ( - 2b \: \hat{j})}{ \sqrt{ {a}^{2} + {4b}^{2} {t}^{2} } \times 2b }

\rm :\longmapsto\:cosp = \dfrac{ {4tb}^{2} }{ \sqrt{ {a}^{2} + {4b}^{2} {t}^{2} } \times 2b }

\bf\implies \:cosp = \dfrac{2bt}{ \sqrt{ {a}^{2} + {4b}^{2} {t}^{2} } }

As,

We know

\rm :\longmapsto\: {tan}^{2} p = {sec}^{2} p - 1

\rm :\longmapsto\: {tan}^{2} p = \dfrac{ {a}^{2} + 4 {b}^{2} {t}^{2} }{4 {b}^{2} {t}^{2} } - 1

\rm :\longmapsto\: {tan}^{2} p = \dfrac{ {a}^{2} + 4 {b}^{2} {t}^{2} - 4 {b}^{2} {t}^{2}}{4 {b}^{2} {t}^{2} }

\rm :\longmapsto\: {tan}^{2} p = \dfrac{ {a}^{2}}{4 {b}^{2} {t}^{2} }

\rm :\longmapsto\:tanp \: = \: \dfrac{a}{2bt}

\bf\implies \:p \: = \: {tan}^{ - 1} \bigg(\dfrac{a}{2bt} \bigg)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\bf \bold{ \:\orange{ Answer \: (d)\downarrow}}}

The mean velocity vector is given by

\rm :\longmapsto\:\vec{ \overline{v}} = \dfrac{\int_0^t \: \vec{v} \: dt}{ \int \: dt}

\rm :\longmapsto\:\vec{ \overline{v}} = \dfrac{\int_0^t \: (a\: \hat{i} - 2bt \: \hat{j}) \: dt}{ t}

\rm :\longmapsto\:\vec{ \overline{v}} = \dfrac{at\: \hat{i} - 2b \: \dfrac{ {t}^{2} }{2} \: \hat{j} }{t}

\bf :\longmapsto\:\vec{ \overline{v}} = a\: \hat{i} - b {t} \: \hat{j}

Hence,

\rm :\longmapsto\: |\vec{ \overline{v}} | = \sqrt{ {a}^{2} + {( - bt)}^{2} }

\bf\implies \: |\vec{ \overline{v}}| = \sqrt{ {a}^{2} + {b}^{2} {t}^{2} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions