Math, asked by Harshababi, 9 months ago

1/25x^2-1/36y^2 factorize ​

Answers

Answered by warylucknow
0

The factors of \frac{1}{25}x^{2}-\frac{1}{36}y^{2} are (\frac{1}{5}x+\frac{1}{6}y)(\frac{1}{5}x-\frac{1}{6}y).

Step-by-step explanation:

The value of (a + b)(a - b) is:

(a + b)(a - b)=a^{2}-b^{2}

Use this property to determine the factors of the expression \frac{1}{25}x^{2}-\frac{1}{36}y^{2} as follows:

\frac{1}{25}x^{2}-\frac{1}{36}y^{2}=(\frac{1}{5}x)^{2}-(\frac{1}{6}y)^{2}

                   =(\frac{1}{5}x+\frac{1}{6}y)(\frac{1}{5}x-\frac{1}{6}y)

Thus, the factors of \frac{1}{25}x^{2}-\frac{1}{36}y^{2} are (\frac{1}{5}x+\frac{1}{6}y)(\frac{1}{5}x-\frac{1}{6}y).

Answered by ishwarsinghdhaliwal
0

 \frac{1}{25x ^{2} }  -  \frac{1}{36y ^{2} }  \\ ( \frac{1}{5x} ) ^{2}  -  (\frac{1}{6y} ) ^{2}  \\  (\frac{1}{5x}  +  \frac{1}{6y} )(\frac{1}{5x}   -   \frac{1}{6y} )

Using identity a²-b²= (a+b)(a-b)

Similar questions