Math, asked by kartikbhoriya4801, 1 year ago

1+2i+3i2÷1-2i+3i2
Solve by a+ib

Answers

Answered by AbhijithPrakash
14

Answer:

\dfrac{1+2i+3i^2}{1-2i+3i^2}=-i

Step-by-step explanation:

\dfrac{1+2i+3i^2}{1-2i+3i^2}

\black{1+2i+3i^2}

\gray{3i^2=-3}

=1+2i-3

\gray{\mathrm{Subtract\:the\:numbers:}\:1-3=-2}

=-2+2i

=\dfrac{-2+2i}{1-2i+3i^2}

\black{1-2i+3i^2}

\gray{3i^2=-3}

=1-2i-3

\gray{\mathrm{Subtract\:the\:numbers:}\:1-3=-2}

=-2-2i

=\dfrac{-2+2i}{-2-2i}

\black{\mathrm{Factor}\:-2+2i:\quad 2\left(-1+i\right)}

=\dfrac{2\left(-1+i\right)}{-2-2i}

\black{\mathrm{Factor}\:-2-2i:\quad -2\left(1+i\right)}

=-\dfrac{2\left(-1+i\right)}{2\left(1+i\right)}

\gray{\mathrm{Divide\:the\:numbers:}\:\dfrac{2}{2}=1}

=-\dfrac{-1+i}{\left(1+i\right)}

\gray{\mathrm{Apply\:complex\:arithmetic\:rule}:\quad \dfrac{a+bi}{c+di}\:=\:\dfrac{\left(c-di\right)\left(a+bi\right)}{\left(c-di\right)\left(c+di\right)}\:=\:\dfrac{\left(ac+bd\right)+\left(bc-ad\right)i}{c^2+d^2}}

\gray{a=-1,\:b=1,\:c=1,\:d=1}

=-\dfrac{\left(-1\cdot \:1+1\cdot \:1\right)+\left(1\cdot \:1-\left(-1\right)\cdot \:1\right)i}{1^2+1^2}

\gray{\mathrm{Refine}}

=-\dfrac{2i}{2}

\gray{\mathrm{Simplify}\:-\dfrac{2i}{2}}

=-i

Similar questions