Math, asked by samranrodrigues7254, 9 days ago

1+2sin^2 tetha/1+3 tan^2 tetha = cos^2 tetha

Answers

Answered by jitendra12iitg
0

Answer:

See the explanation

Step-by-step explanation:

\text{LHS}=\dfrac{1+2\sin^2\theta}{1+3\tan^2\theta}

        =\dfrac{1+2\sin^2\theta}{1+3(\frac{\sin^2\theta}{\cos^2\theta})}   \boxed{\because \tan\theta=\frac{\sin\theta}{\cos\theta}}

        =\dfrac{1+2\sin^2\theta}{\frac{\cos^2\theta+3\sin^2\theta}{\cos^2\theta}}\\\\=\dfrac{1+2\sin^2\theta}{(\cos^2\theta+\sin^2\theta)+2\sin^2\theta}\times \cos^2\theta    

       =\dfrac{1+2\sin^2\theta}{(1)+2\sin^2\theta}\times \cos^2\theta  \boxed{\because \sin^2\theta+\cos^2\theta=1}

       =\cos^2\theta=\text{RHS}

Hence proved

Similar questions