Math, asked by rishit2243, 1 year ago

(1/2x)+1+log6 base5=log(5^(1/x)+125) find x​

Answers

Answered by amitnrw
3

Given :   (1/2x)  + 1  + log₅6 = log₅(5¹/ˣ + 125)

To find : x

Solution:

(1/2x)  + 1  + log₅6 = log₅(5¹/ˣ + 125)

=> (1/2x)  + 1   =  log₅(5¹/ˣ + 125) -  log₅6

=> (2x + 1) /2x =  log₅ ( (5¹/ˣ + 125)/6)

=>  (5¹/ˣ + 125)/6  = 5⁽²ˣ⁺¹⁾/²ˣ

=>  (5¹/ˣ + 125)  = 6 *  5⁽²ˣ⁺¹⁾/²ˣ

=> 5¹/ˣ + 5³ = 5*  5⁽²ˣ⁺¹⁾/²ˣ  +  5⁽²ˣ⁺¹⁾/²ˣ  

=> 5¹/ˣ + 5³ =    5⁽⁴ˣ⁺¹⁾/²ˣ  +  5⁽²ˣ⁺¹⁾/²ˣ  

Now there are two case

5¹/ˣ  =  5⁽⁴ˣ⁺¹⁾/²ˣ    & 5³ = 5⁽²ˣ⁺¹⁾/²ˣ  

or  5¹/ˣ   = 5⁽²ˣ⁺¹⁾/²ˣ   & 5³ =  5⁽⁴ˣ⁺¹⁾/²ˣ

Case 1 :

5¹/ˣ  =  5⁽⁴ˣ⁺¹⁾/²ˣ    & 5³ = 5⁽²ˣ⁺¹⁾/²ˣ  

=> 1/x = (4x + 1)/2x  => 4x + 1 = 2  => x =  1/4

 3 = (2x + 1)/2x  => 6x = 2x + 1 => x = x = 1/4

Hence x = 1/4

Case 2 :

5¹/ˣ   = 5⁽²ˣ⁺¹⁾/²ˣ   & 5³ =  5⁽⁴ˣ⁺¹⁾/²ˣ

=> 1/x = (2x + 1)/2x  => 2x + 1 = 2 => x = 1/2

  3 = (4x + 1)/2x  => 6x = 4x + 1  => x =  1/2

Hence x = 1/2

x = 1/4  & 1/2  are the Solution

Learn More:

Solve log base 2x-1 of ( x^4+2)/(2x+1) = 1

https://brainly.in/question/17481275

(Log(base 2) 10).(log(base2) 80)-(log(base2) 5).(log(base2) 160)

https://brainly.in/question/9807694

Answered by thelegend06
0

hope it helps...............

Attachments:
Similar questions