Math, asked by sshilpareddy2901, 9 months ago

{(1/3)^-2 - (1/2)^-3}÷(1/4)^-2

Answers

Answered by iralHolland96
40

hope it will helps you.......

Attachments:
Answered by pulakmath007
4

\displaystyle \sf   \bigg \{ {\bigg( \frac{1}{3} \bigg)}^{ - 2}  - {\bigg( \frac{1}{2} \bigg)}^{ - 3}  \bigg \} \div {\bigg( \frac{1}{4} \bigg)}^{ - 2}  =  \frac{1}{16}

Given :

\displaystyle \sf   \bigg \{ {\bigg( \frac{1}{3} \bigg)}^{ - 2}  - {\bigg( \frac{1}{2} \bigg)}^{ - 3}  \bigg \} \div {\bigg( \frac{1}{4} \bigg)}^{ - 2}

To find :

To simplify the expression

Formula :

We are aware of the formula on indices that :

 \sf{  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf   \bigg \{ {\bigg( \frac{1}{3} \bigg)}^{ - 2}  - {\bigg( \frac{1}{2} \bigg)}^{ - 3}  \bigg \} \div {\bigg( \frac{1}{4} \bigg)}^{ - 2}

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf   \bigg \{ {\bigg( \frac{1}{3} \bigg)}^{ - 2}  - {\bigg( \frac{1}{2} \bigg)}^{ - 3}  \bigg \} \div {\bigg( \frac{1}{4} \bigg)}^{ - 2}

\displaystyle \sf  =   \bigg \{ {\bigg(  {3}^{ - 1}   \bigg)}^{ - 2}  - {\bigg(  {2}^{ - 1}  \bigg)}^{ - 3}  \bigg \} \div {\bigg(  {4}^{ - 1}  \bigg)}^{ - 2}

\displaystyle \sf  =   \bigg \{  {3}^{( - 1) \times ( - 2)}   - {(  2 )}^{ (- 1) \times ( - 3)}  \bigg \} \div {4}^{ ( - 1) \times (- 2)}

\displaystyle \sf  =   \bigg \{   {3}^{2} -  {2}^{3}    \bigg \} \div  {4}^{2}

\displaystyle \sf  =    \frac{ {3}^{2} -  {2}^{3}  }{ {4}^{2} }

\displaystyle \sf  =    \frac{ 9 -  8 }{ 16}

\displaystyle \sf  =    \frac{ 1 }{ 16}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. choose the correct alternative : 100¹⁰⁰ is equal to (a) 2¹⁰⁰ × 50¹⁰⁰ (b) 2¹⁰⁰ + 50¹⁰⁰ (c) 2² × 50⁵⁰ (d) 2² + 50⁵⁰

https://brainly.in/question/47883149

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

#SPJ3

Similar questions