Math, asked by sankalplele, 1 year ago

(1/√3+√2)-(2/√5-√3)-(3/√2-√5)
Simplify by rationalising denominator.

Answers

Answered by ShuchiRecites
3
Hello Mate!

1 / ( √3 + √2 ) = 1 / ( √3 + √2 ) × ( √3 - √2 ) / ( √3 - √2 )
= √3 - √2

2 / ( √5 - √3 ) × ( √5 + √3 ) / ( √5 + √3 )

= √5 + √3

3 / ( √2 - √5 ) × ( √2 + √5 ) / ( √2 + √5 )
= - √2 - √5

√3 - √2 - √5 - √3 + √2 + √5
= 0

Hope it helps☺!

DaIncredible: sis i guess you have written √2 instead √5
DaIncredible: i might be wrong
DaIncredible: but inform me plz as if im wrong then I'll edit mine
DaIncredible: :)
Answered by DaIncredible
4
Hey Friend,
Here is the answer you were looking for:
 \frac{1}{ \sqrt{3}  +  \sqrt{2} }  -  \frac{2}{ \sqrt{5}  -  \sqrt{3} }  -  \frac{3}{ \sqrt{2}  -  \sqrt{5} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{1}{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  -  \frac{2}{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }  -  \frac{3}{ \sqrt{2}  -  \sqrt{5} }  \times  \frac{ \sqrt{2}  +  \sqrt{5} }{ \sqrt{2}  +  \sqrt{5} }  \\  \\ using \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{3}  -  \sqrt{2} }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2}) }^{2} }  -  \frac{2( \sqrt{5} ) + 2( \sqrt{3} )}{ {( \sqrt{5}) }^{2} -  {( \sqrt{3} )}^{2}  }  -  \frac{3( \sqrt{2}) + 3( \sqrt{5})  }{ {( \sqrt{2}) }^{2} -  {( \sqrt{5} )}^{2}  }  \\  \\  = ( \frac{ \sqrt{3}  -  \sqrt{2} }{3 - 2})  -  (\frac{2 \sqrt{5} + 2 \sqrt{3}  }{5 - 3} ) - ( \frac{3 \sqrt{2} + 3 \sqrt{5}  }{2 - 5})  \\  \\  =  \sqrt{3}  -  \sqrt{2}  - ( \frac{2( \sqrt{5}  +  \sqrt{3}) }{2} ) - ( \frac{3( \sqrt{2}  +  \sqrt{5}) }{ - 3} ) \\  \\  =  \sqrt{3}  -  \sqrt{2}  - ( \sqrt{5}  +  \sqrt{3} ) - ( -  \sqrt{2}  -  \sqrt{5} ) \\  \\  =  \sqrt{3}  -  \sqrt{2}  -  \sqrt{5}  -  \sqrt{3}  +  \sqrt{2}  +  \sqrt{5}  \\  \\  = 0

Hope this helps!!!

@Mahak24

Thanks...
☺☺
Similar questions