জল ও কাচের প্রতিসরাঙ্ক যথাক্রমে 1/3 ও 4/3 হলে, কাচ সাপেক্ষে জলের প্রতিসরাঙ্ক কত?
plz explain this
Answers
Explanation:
কোনো উপাদানের প্রতিসরাঙ্ক বা প্রতিসরণাঙ্ক (ইংরেজিঃ Refractive Index) বলতে ঐ উপাদানের মধ্য দিয়ে আলো কতটা দ্রুত অতিবাহিত হয় তার একটি মাত্রাহীন সংখ্যা। এটি সংজ্ঞায়িতঃ
একটি প্লাস্টিক ব্লকে আলো প্রতিসরিত হচ্ছে
{\displaystyle n={\frac {c}{v}}}{\displaystyle n={\frac {c}{v}}},
যেখানে {\displaystyle c}{\displaystyle c} হলো শূন্য মাধ্যমে আলোর বেগ এবং {\displaystyle v}{\displaystyle v} হলো ঐ নির্দিষ্ট উপাদানে আলোর দশাবেগ। উদাহরণস্বরূপ পানির প্রতিসরাঙ্ক ৪/৩ বলতে বুঝায় শূন্য মাধ্যমে আলোর বেগ পানিতে আলোর বেগ অপেক্ষা ৪/৩ গুণ বেশি।
প্রতিসরাঙ্ক নির্দেশ করে কোনো উপাদানের মধ্য দিয়ে আলোকরশ্মি অতিবাহিত হওয়ার সময় কতটা প্রতিসরিত হয় বা আলোর পথ কতটা বেঁকে যায়। এটি স্নেলের প্রতিসরণের সূত্র দ্বারা ব্যাখ্যা করা হয়,
{\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}}{\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}}
একটি আলোকরশ্মির প্রতিসরণ
যেখানে আলোকরশ্মি {\displaystyle n_{1}}{\displaystyle n_{1}} ও {\displaystyle n_{2}}{\displaystyle n_{2}} প্রতিসরাঙ্ক বিশিষ্ট দুটি ভিন্ন মাধ্যমের সংযোগস্থলে আপতিত হলে {\displaystyle \theta _{1}}{\displaystyle \theta _{1}} হলো আপতন কোণ এবং {\displaystyle \theta _{2}}{\displaystyle \theta _{2}} হলো প্রতিসরণ কোণ। প্রতিসরাঙ্ক আরো ধারণা দেয় দুটি ভিন্ন মাধ্যমের সংযোগস্থলে আলো কতটা প্রতিসরিত হয়, পূর্ণ অভ্যন্তরীণ প্রতিফলনে ক্রান্তি কোণ, ব্রূস্টার কোণ[১] ইত্যাদি ব্যাপারে।
প্রতিসরাঙ্ককে এভাবেও কল্পনা করা যেতে পারে যে, কোনো একটি মাধ্যমে আলোর বেগ এবং তড়িৎ চৌম্বকীয় বিকিরণের তরঙ্গদৈর্ঘ্য এদের শূন্য মাধ্যমের মানের তুলনায় কতগুণ পরিবর্তিত হয়ঃ ঐ মাধ্যমে আলোর বেগ, {\displaystyle v=c/n}{\displaystyle v=c/n} এবং একইভাবে কোনো মাধ্যমে তড়িৎ চৌম্বকীয় বিকিরণের তরঙ্গদৈর্ঘ্য, {\displaystyle \lambda =\lambda _{0}/n}{\displaystyle \lambda =\lambda _{0}/n}, যেখানে {\displaystyle \lambda _{0}}{\displaystyle \lambda _{0}} হলো শূন্য মাধ্যমে আলোর তরঙ্গদৈর্ঘ্য। এটি হতে স্পষ্ট যে শূন্য মাধ্যমের প্রতিসরাঙ্ক {\displaystyle 1}{\displaystyle 1} এবং যেকোনো মাধ্যমে কম্পাঙ্ক প্রতিসরাঙ্কের উপর নির্ভরশীল নয়, কেননা কম্পাঙ্ক, {\displaystyle f=v/\lambda }{\displaystyle f=v/\lambda }। ফলস্বরূপ মানুষের চোখে প্রতিসরিত আলোকরশ্মি যা কম্পাঙ্কের উপর নির্ভরশীল হলেও মাধ্যমের প্রতিসরাঙ্কের উপর নির্ভরশীল নয়।
প্রতিসরাঙ্ক তরঙ্গদৈর্ঘ্যকে প্রভাবিত করলেও এটি কম্পাঙ্ক, আলোর বর্ণ এবং শক্তির উপর নির্ভর করে। তাই এসবের সম্মিলিত প্রভাবের ফলে সাদা আলো বিভিন্ন বর্ণে বিভক্ত হয়ে পড়ে যা আলোর বিচ্ছুরণ নামে পরিচিত। আলোর এই ধর্ম পরিলক্ষিত হয় প্রিজম এবং রংধনুতে।
আলোর প্রতিসরাঙ্কের ধারণা এক্স-রশ্মি হতে রেডিও তরঙ্গ তথা সম্পূর্ণ তড়িৎ চৌম্বকীয় বর্ণালি জুড়েই প্রযোজ্য। এছাড়াও এ ধারণা অন্যান্য তরঙ্গ সংশ্লিষ্ট ঘটনা, যেমনঃ শব্দ তরঙ্গের ক্ষেত্রেও প্রযোজ্য। এক্ষেত্রে আলোর বেগের পরিবর্তে শব্দের বেগ এবং শূন্য মাধ্যম ব্যতীত অন্য কোনো মাধ্যমকে বিবেচনায় নেয়া হয়।[২]
8-):-!:-!B-)B-)(TT);)