Math, asked by pritibanode47, 9 months ago

1/3+4i+1 /3-4i(1 divided by 3+4i plus 1 divided by 3-4i)​

Answers

Answered by Anonymous
5

Answer:

\sf{The \ value \ of \ \dfrac{1}{3+4i}+\dfrac{1}{3-4i}}

\sf{is \ \dfrac{6}{25}.}

To find:

\sf{The \ value \ of \ \dfrac{1}{3+4i}+\dfrac{1}{3-4i}}

Solution:

\sf{\leadsto{\dfrac{1}{3+4i}+\dfrac{1}{3-4i}}}

\sf{\leadsto{\dfrac{3-4i+3+4i}{(3+4i)(3-4i)}}}

\sf{\leadsto{\dfrac{6}{9-16i^{2}}}}

\sf{\leadsto{\dfrac{6}{9+16}}}

\sf{\leadsto{\dfrac{6}{25}}}

\sf\purple{\therefore{\tt{The \ value \ of \ \dfrac{1}{3+4i}+\dfrac{1}{3-4i}}}}

\sf\purple{\tt{is \ \dfrac{6}{25}.}}

____________________________

Extra information:

  • \sf{i=\sqrt{-1}}

  • \sf{i^{2}=-1}

  • \sf{i^{3}=-i}

  • \sf{i^{4}=1}
Answered by llSecreTStarll
4

To Find :

  • value of 1/3+4i+1 /3-4i

Solution :

 =  \rm \large{ \frac{1}{3 + 4i} +  \frac{1}{3 - 4i}  } \\

  • Taking LCM

 =  \rm \large{ \frac{(3 - 4i) + (3 + 4i)}{(3 + 4i).(3 - 4i)} } \\

› By using identity (a + b) (a - b) = -

 =  \rm \large{ \frac{3 - 4i + 3 + 4i}{9 - 16 {i}^{2} }} \\

As we know that,

  • i² = -1

So,

 =  \rm \large{ \frac{6}{9 - 16 \times ( - 1)} } \\

 =  \rm \large{ \frac{6}{9 + 16} } \\

 =  \rm \large{ \frac{6}{25} } \\

   \large\dag  \large { \red{\underline{\bf{Hence }}}}

\green{\textrm{ Value of 1/(3+4i)+1 /(3-4i) is 6/25 }}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions