Math, asked by moripanth, 4 days ago

1+3+5+7+9+11 . . . . . . . . . . . +999999

What is the sum of this AP ??​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given AP series is

\rm \: 1 + 3 + 5 +  -  -  -  + 999999 \\

having,

First term, a = 1

Common difference, d = 3 - 1 = 2

nᵗʰ term, aₙ = 999999

Let assume that number of terms in AP series be n.

We know,

↝ nᵗʰ term of an arithmetic progression is,

\begin{gathered}\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the progression.

n is the no. of terms.

d is the common difference.

So, on substituting the values, we get

\rm \: 999999 = 1 + (n - 1) \times 2 \\

\rm \: 999999 - 1  =  (n - 1) \times 2 \\

\rm \: 999998  =  (n - 1) \times 2 \\

\rm \: n - 1 = 499999

\rm\implies \:n \:  =  \: 500000 \\

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic progression is,

\begin{gathered}\:\:{\underline{{\boxed{\bf{{ \: S_n\:=\dfrac{n}{2} \bigg( \:a\:+ \: a_n \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the progression.

n is the no. of terms.

So, on substituting the values, we get

\rm \:  \: S_n\:=\dfrac{n}{2} \bigg( \:a\:+ \: a_n \bigg) \\

\rm \:  \: S_n\:=\dfrac{500000}{2} \bigg( \:1\:+ \: 999999 \bigg) \\

\rm \:  \: S_n\:=\dfrac{500000}{2} \bigg( \:1000000 \:  \bigg) \\

\rm \:  \: S_n\:=500000 \times 500000 \\

\rm\implies \:\rm \:  \: S_n\:=25 \times  {10}^{10}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

↝ Sum of n  terms of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the progression.

n is the no. of terms.

d is the common difference.

Similar questions