Math, asked by JasvirSinghh, 9 months ago

1 , 3 , 5 , 7 ,...... , 99


Find the no. of terms in AP.​

Answers

Answered by Tanujrao36
276

Given :-

\sf{ a\:=\: 1}

\sf{d \:=\: 2}

\sf{\ a_{n} \:=\:99 }

To find :-

\sf{Number\:of\: terms(n)}

Formula used !

{\boxed{\sf{\ a_{n}\:=\:a+(n-1)d}}}

Solution :-

{\sf{\ a_{n}\:=\:a+(n-1)d}}

{\sf{99\:=\:1+(n-1)2}}

{\sf{99-1\:=\:(n-1)2}}

{\sf{\cancel{98}\:=\:(n-1)\cancel{2}}}

{\sf{n-1\:=\:49}}

{\sf{n\:=\:50}}

\bf{So\:no.\:of\:terms\:in\:this\:Ap\:is\:50 }

Answered by MrChauhan96
320

\huge\bf{Given}

\tt{1,3,5,7,9.........,99}

\huge\bf{Simplifying \: it }

\bf{Step\:by\:step \: solution :-}

\bf{In \: This\: AP }

\bf{A\: = \: 1 }

\bf{D\: = 3-1\:=\:2 }

\bf{A_{n} \: = \: 99}

\bf{As\: We\: Know }

\bf{\boxed{ A_{n}\:=\:a\:+\:(n-1)\:d}}

\bf{ 99\:=\:1\:+\:(n-1)\:2}

\bf{\frac{99-1}{2}=\:n-1}

\bf{\frac{98}{2}=\:n-1}

\bf{\frac{\cancel98}{\cancel2}=\:n-1}

\bf{49}=\:n-1

\bf{49+1}=\:n

\bf{50}=\:n

\huge\bf{Hope\:It\:Help\:You}

Similar questions