Math, asked by User125, 9 months ago

(1+3+5+...+99)/(2+4+6+...+100)

Answers

Answered by Aviral101
0

Answer:

numerator=1+3+5.......99

an=a+(n-1)d

99=1+(n-1)2

(n-1)=49

n=50

Sn=n/2(a+an)=25×100

denominator=2+4+6......100

100=2+(n-1)2

n=50

Sn=25×102

hence answer=2500/25×102=100/102=50/51

Please mark as Brainliest.

Answered by prajwal1697
0

 \frac{(1 +3 + 5 + 9......... + 99)}{(2 + 4 + 6 +  ....... + 100)}  \\  =  >  \frac{(1 + 2 + 3 + 4......100) - (2 + 4 + 6 +  ....... + 100)}{(2 + 4 + 6 +  ....... + 100)}  \\  =  >  \frac{(1 + 2 + 3 + 4......100)}{(2 + 4 + 6 +  ....... + 100)}  - 1 \\  =  >  \frac{(1 + 2 + 3 + 4......100)}{2(1 + 2 + 3 + 4......50)}   - 1\\  =  >  \frac{ \frac{100(101)}{2} }{ \frac{2(50)(51)}{2} }  - 1 \\  =  >  \frac{101}{51}  - 1 \\  =  >  \frac{101 - 51}{51}  \\  =  >  \frac{50}{51}

Similar questions