Math, asked by bajarangapannusunnda, 4 days ago

1 (3) If n(A)=2, P(A) = [ ( then find n(S) from the giyen equation​

Answers

Answered by chinmayeeparida51
0

Answer:

Given the series [−4+(−1)+2+⋅⋅⋅⋅x=437] in A.P.

Then,

a=−4

d=−1−(−4)=3

S

n

=437

Then, using sum formula A.P.

S

n

=

2

n

[2a+(n−1)d]

⇒437=

2

n

[2(−4)+(n−1)3]

⇒874=n[−8+3n−3]

⇒874=3n

2

−11n

⇒3n

2

−11n=874

⇒3n

2

−11n−874=0

⇒3n

2

−(57−46)n−874=0

⇒3n

2

−57n−46n−874=0

⇒3n(n−19)−46(n−19)=0

⇒(n−19)(3n−19)=0

⇒n−19=0,3n−19=0

⇒n=19,n=

3

19

Hence, n=19

So,

x=a+(n−1)d

x=−4+(19−1)3

x=−4+54

x=50

Similar questions