1 (3) If n(A)=2, P(A) = [ ( then find n(S) from the giyen equation
Answers
Answered by
0
Answer:
Given the series [−4+(−1)+2+⋅⋅⋅⋅x=437] in A.P.
Then,
a=−4
d=−1−(−4)=3
S
n
=437
Then, using sum formula A.P.
S
n
=
2
n
[2a+(n−1)d]
⇒437=
2
n
[2(−4)+(n−1)3]
⇒874=n[−8+3n−3]
⇒874=3n
2
−11n
⇒3n
2
−11n=874
⇒3n
2
−11n−874=0
⇒3n
2
−(57−46)n−874=0
⇒3n
2
−57n−46n−874=0
⇒3n(n−19)−46(n−19)=0
⇒(n−19)(3n−19)=0
⇒n−19=0,3n−19=0
⇒n=19,n=
3
19
Hence, n=19
So,
x=a+(n−1)d
x=−4+(19−1)3
x=−4+54
x=50
Similar questions