Math, asked by tanya27200701, 6 months ago

1/(3 - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(7) - 6) = 5
please tell me correct answer​

Answers

Answered by HrishikeshSangha
15

The correct question is, " Find the value of  \bf \frac{1}{3-\sqrt{8} } -\frac{1 }{\sqrt{8}-\sqrt{7}  } +\frac{1}{\sqrt{7}-\sqrt{6}} -\frac{1}{\sqrt{6}-\sqrt{5}} +\frac{1}{\sqrt{5}-{2}} ".

The answer is 1.

\frac{1}{3-\sqrt{8} } -\frac{1 }{\sqrt{8}-\sqrt{7}  } +\frac{1}{\sqrt{7}-\sqrt{6}} -\frac{1}{\sqrt{6}-\sqrt{5}} +\frac{1}{\sqrt{5}-{2}}

After rationalizing the terms, we get

\frac{1}{3-\sqrt{8} }=3+\sqrt{8}

\frac{1 }{\sqrt{8}-\sqrt{7}  } =\sqrt{8}+\sqrt{7}

\frac{1 }{\sqrt{7}-\sqrt{6}  } =\sqrt{7}+\sqrt{6}

\frac{1 }{\sqrt{6}-\sqrt{5}  } =\sqrt{6}+\sqrt{5}

\frac{1 }{\sqrt{5}-2  } =\sqrt{5}+2

By substituting these values, we get

\frac{1}{3-\sqrt{8} } -\frac{1 }{\sqrt{8}-\sqrt{7}  } +\frac{1}{\sqrt{7}-\sqrt{6}} -\frac{1}{\sqrt{6}-\sqrt{5}} +\frac{1}{\sqrt{5}-{2}}=3+\sqrt{8}-[\sqrt{8} +\sqrt{7}]+[\sqrt{7}+\sqrt{6}]-[\sqrt{6}+\sqrt{5}  ]+[\sqrt{5}-2 ]    \\\\\frac{1}{3-\sqrt{8} } -\frac{1 }{\sqrt{8}-\sqrt{7}  } +\frac{1}{\sqrt{7}-\sqrt{6}} -\frac{1}{\sqrt{6}-\sqrt{5}} +\frac{1}{\sqrt{5}-{2}}=3-2=1

Hence the value of the given function is 1.

#SPJ2

Similar questions