Math, asked by aj987654210aman, 1 month ago

1/3 x + y = 10/3 ; 2x + 1/4 y = 11/4​

Answers

Answered by nta23302
3

Answer:

 \frac{x}{3}  + y =  \frac{10}{3}  =  > y =  \frac{10}{3}  -  \frac{x}{3}

2x +  \frac{y}{4}  =   \frac{11}{4}   =  > 2x  +   \frac{ \frac{10}{3}  -  \frac{x}{3} }{4} =  \frac{11}{4}

8x +  \frac{10}{3}  -  \frac{x}{3} = 11

24x + 10 - x = 33

23x = 23 =  > x = 1 =  > y = 3

Answered by MasterDhruva
14

Solution :-

\sf \leadsto \dfrac{1}{3}x + y = \dfrac{10}{3} \: \: --- (i)

\sf \leadsto 2x + \dfrac{1}{4}y = \dfrac{11}{4} \: \: --- (ii)

By first equation,

\sf \leadsto \dfrac{1}{3}x + y = \dfrac{10}{3}

\sf \leadsto \dfrac{1}{3}x = \dfrac{10}{3} - y

\sf \leadsto \dfrac{1}{3}x = \dfrac{10 - 3y}{3}

\sf \leadsto x = \dfrac{\dfrac{10 - 3y}{3}}{\dfrac{1}{3}}

\sf \leadsto x = \dfrac{10 - 3y}{3} \times 3

\sf \leadsto x = \dfrac{30 - 9y}{3}

Now, we can find the original value of y.

\sf \leadsto 2x + \dfrac{1}{4}y = \dfrac{11}{4}

\sf \leadsto 2 \bigg( \dfrac{30 - 9y}{3} \bigg) + \dfrac{1}{4}y = \dfrac{11}{4}

\sf \leadsto \dfrac{60 - 18y}{3} + \dfrac{1y}{4} = \dfrac{11}{4}

\sf \leadsto \dfrac{240 - 72y + 3y}{12} = \dfrac{11}{4}

\sf \leadsto \dfrac{240 - 69y}{12} = \dfrac{11}{4}

\sf \leadsto 240 - 69y = 12 \bigg( \dfrac{11}{4} \bigg)

\sf \leadsto 240 - 69y = 33

\sf \leadsto -69y = 33 - 240

\sf \leadsto -69y = -207

\sf \leadsto y = \dfrac{-207}{-69}

\sf \leadsto y = 3

Now, we can find the original value of x.

\sf \leadsto \dfrac{1}{3}x + y = \dfrac{10}{3}

\sf \leadsto \dfrac{x}{3} + 3 = \dfrac{10}{3}

\sf \leadsto \dfrac{x + 9}{3} = \dfrac{10}{3}

\sf \leadsto x + 9 = 10

\sf \leadsto x = 10 - 9

\sf \leadsto x = 1

Therefore, the values of x and y are 1 and 3 respectively.

Similar questions