Math, asked by niteshsinghrajput200, 9 months ago

( 1 ). √3²+ 2x - 8√3

Answers

Answered by pk4797647
1

Step-by-step explanation:

j

Given : \sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0Given:3x2−22x−23=0</p><p></p><p>On comparing with ax^2 + bx + c = 0, we get</p><p></p><p>= &gt; a = \sqrt{3},b = -2\sqrt{2},c = -2\sqrt{3}=&gt;a=3,b=−22,c=−23</p><p></p><p>(1)</p><p></p><p>x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}x=2a−b+b2−4ac</p><p></p><p>= &gt; \frac{-(-2\sqrt{2})+\sqrt{(-2\sqrt{2})^2 - 4\sqrt{3}(-2\sqrt{3})}}{2\sqrt{3}}=&gt;23−(−22)+(−22)2−43(−23)</p><p></p><p>= &gt; \frac{2\sqrt{2}\sqrt{(2\sqrt{2})^2 + 4\sqrt{3} * 2\sqrt{3}}}{2\sqrt{3}}=&gt;2322(22)2+43∗23</p><p></p><p>= &gt; \frac{2\sqrt{2}+\sqrt{(2\sqrt{2})^2 + 24}}{2\sqrt{3}}=&gt;2322+(22)2+24</p><p></p><p>= &gt; \frac{2\sqrt{2} + \sqrt{32}}{2\sqrt{3}}=&gt;2322+32</p><p></p><p>= &gt; \frac{2\sqrt{2} + 4\sqrt{2}}{2\sqrt{3}}=&gt;2322+42</p><p></p><p>= &gt; \frac{6\sqrt{2}}{2\sqrt{3}}=&gt;2362</p><p></p><p>= &gt; \frac{3\sqrt{2}}{\sqrt{3}}=&gt;332</p><p></p><p>= &gt; \sqrt{6}=&gt;6</p><p></p><p>---------------------------------------------------------------------------------------------------------------</p><p></p><p>(2)</p><p></p><p>= &gt; x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}=&gt;x=2a−b−b2−4ac</p><p></p><p>= &gt; x = \frac{-(-2\sqrt{2})-\sqrt{(2\sqrt{2})^2+4\sqrt{3}*2\sqrt{3}}}{2\sqrt{3}}=&gt;x=23−(−22)−(22)2+43∗23</p><p></p><p>= &gt;\frac{2\sqrt{2}-{4\sqrt{2}}}{2\sqrt{3}}=&gt;2322−42</p><p></p><p>= &gt; \frac{-2\sqrt{2}}{2\sqrt{3}}=&gt;23−22</p><p></p><p>= &gt; -\sqrt{\frac{2}{3}}=&gt;−32</p><p></p><p>---------------------------------------------------------------------------------------------------------------</p><p></p><p>Therefore the required quadratic solutions are|:</p><p></p><p>= &gt; x = \boxed {\sqrt{6}, -\sqrt{\frac{2}{3}} }=&gt;x=6,−32</p><p></p><p>Hope this helps</p><p></p><p>

Answered by rishikant580
0

x=5.42 is the correct answer

Similar questions