Math, asked by susmithaelluru, 8 months ago

1+√3tan^2(x)=(1+√3)tanx then find x​

Answers

Answered by Stera
2

Answer

The value of x is either 45°(π/4) or 30°(π/6)

Solution

Given,

 \sf1 +  \sqrt{3}  \tan {}^{2}  x = (1 +  \sqrt{3} ) \tan x \\  \\ \sf  \implies \sqrt{3}  \tan {}^{ 2} x - (1 +  \sqrt{3} ) \tan x + 1 = 0 \\  \\  \sf \implies \sqrt{3}  \tan {}^{2}x -  \tan x -  \sqrt{3}  \tan x + 1 = 0 \\  \\ \sf  \implies \sqrt{3} \tan {}^{2}x -   \sqrt{3}  \tan x  -  \tan x + 1 = 0 \\  \\   \sf\implies \sqrt{3}  \tan x( \tan x - 1) - 1( \tan x - 1) = 0 \\  \\  \sf \implies( \sqrt{3}  \tan x - 1)( \tan x - 1) = 0

Now we have :

  \implies \sf\sqrt{3} \tan x - 1 = 0 \\  \\   \sf\implies \tan x =  \frac{1}{ \sqrt{3} }  \\   \\  \implies \sf \tan x =  \tan30 \degree \\  \\   \sf\implies x = 30\degree  \\  \\  \implies \sf x =  \dfrac{ \pi}{6}

and again ,

\sf \implies \tan x - 1 = 0 \\\\ \sf\implies tan x = 1 \\\\ \sf \implies \tan x = \tan 45\degree \\\\ \sf\implies x = 45\degree \\\\ \implies \sf x = \dfrac{\pi}{4}

Similar questions