Math, asked by riddhidd, 7 months ago

1+√3tan^2(x)=(1+√3)tanx then find x​

Answers

Answered by Anonymous
30

\;\;\underline{\textbf{\textsf{ Given:-}}}

 \sf1 +  \sqrt{3}  \tan {}^{2}  x = (1 +  \sqrt{3} ) \tan x

\;\;\underline{\textbf{\textsf{ To Find:-}}}

• Value of x

\;\;\underline{\textbf{\textsf{ Solution :-}}}

 \\  \underline{\textsf{Given that - }} \\  \\

 \sf1 +  \sqrt{3}  \tan {}^{2}  x = (1 +  \sqrt{3} ) \tan x

 \\  \underline{\textsf{Then:- }} \\  \\  \\  \\ \sf   \dashrightarrow \sqrt{3}  \tan {}^{ 2} x - (1 +  \sqrt{3} ) \tan x + 1 = 0 \\  \\  \sf\dashrightarrow   \sqrt{3}  \tan {}^{2}x -  \tan x -  \sqrt{3}  \tan x + 1 = 0 \\  \\ \sf  \dashrightarrow  \sqrt{3} \tan {}^{2}x -   \sqrt{3}  \tan x  -  \tan x + 1 = 0 \\  \\   \sf\dashrightarrow  \sqrt{3}  \tan x( \tan x - 1) - 1( \tan x - 1) = 0 \\  \\  \sf \dashrightarrow ( \sqrt{3}  \tan x - 1)( \tan x - 1) = 0

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \underline{\textsf{One term: - }} \\  \\

\dashrightarrow  \sf\sqrt{3} \tan x - 1 = 0 \\  \\   \sf \dashrightarrow \tan x =  \frac{1}{ \sqrt{3} }  \\   \\ \dashrightarrow   \sf \tan x =  \tan30 \degree \\  \\   \sf\dashrightarrow x = 30\degree  \\  \\  \dashrightarrow  \sf x =  \dfrac{ \pi}{6}

 \\  \underline{\textsf{Another term:- }} \\  \\

\sf\dashrightarrow  \tan x - 1 = 0 \\\\ \sf \dashrightarrow tan x = 1 \\\\ \sf \dashrightarrow  \tan x = \tan 45\degree \\\\ \sf \dashrightarrow x = 45\degree \\\\ \dashrightarrow  \sf x = \dfrac{\pi}{4}

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{ Value of x is  \textbf{ 45°(π/4) or 30°(π/6) }}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by BrainlyllHeroll
1

Answer:

π/6 is the answer

Step-by-step explanation:

.........................s

Similar questions