Math, asked by suvarnakolte1983, 10 months ago

1/3x+y + 1/3x-y= 12/35 ; 1/2(3x+y)- 1/2(3x-y)=2/35
find the value of x and y
solve by simultaneous equation​

Answers

Answered by adventureisland
0

x=\frac{35}{16}  and y=\frac{-35}{16}

Step-by-step explanation:

Given,\frac{1}{3x+y} +\frac{1}{3x-y} =\frac{12}{35} .........(1)

and  \frac{1}{2(3x+y)} -\frac{1}{2(3x-y)} =\frac{2}{35}.............(2)

Put  \frac{1}{3x+y} = u  and \frac{1}{3x-y} = v in (1) and (2) we get

u+v=\frac{12}{35} ........(3)        

and \frac{1}{2} u-\frac{1}{2} v=\frac{2}{35}........(4)

For this equation (4) multiply by 2 , then the equation (4) becomes

u-v=\frac{4}{35}........(5)

Adding equation of (3) and (5), we get

u+v+u-v=\frac{12}{35} +\frac{4}{35}      

\Rightarrow 2u=\frac{16}{35}

\Rightarrow u=\frac{16}{35\times 2}

\Rightarrow u=\frac{8}{35}

Putting the value of u=\frac{8}{35}  in equation (3), we get

\frac{8}{35}+v=\frac{12}{35}

\Rightarrow v=\frac{12}{35}-\frac{8}{35}

\Rightarrow v=\frac{4}{35}

Therefore u=\frac{8}{35}    and   v=\frac{4}{35}

Therefore \frac{1}{3x+y} = \frac{8}{35}   and   \frac{1}{3x-y} = \frac{4}{35}    [ since\frac{1}{3x+y} =u  and  \frac{1}{3x-y} = v]

3x+y=\frac{35}{8} ..........(6)  

and      }{3x-y} = \frac{35}{4}................(7)

Adding equation (6) and (7)

3x +y+3x-y=\frac{35}{8} +\frac{35}{4}

\Rightarrow 6x=\frac{105}{8}

\Rightarrow x=\frac{105}{8\times 6}

\Rightarrow x=\frac{105}{48} =\frac{35}{16}

Putting the value of x in equation (6) we get

(3\times \frac{35}{16} )+y=\frac{35}{8}

\Rightarrow \frac{105}{16} +y=\frac{35}{8}

\Rightarrow y=\frac{35}{8}-\frac{105}{16}

\Rightarrow y=\frac{-35}{16}

Therefore x=\frac{35}{16}  and y=\frac{-35}{16}.

To learn more

i)Solve the following pair of equation

1/3x + y + 1/3x - y = 3/4 , 1/2(3x + y) - 1/2(x-y) = -1/8

https://brainly.in/question/2344036

ii) 1/3x+y + 1/3x-y =12/35 ; 1/2 (3x+y) - 1/2(3x -y) =2/35.​

https://brainly.in/question/15263101

Similar questions