Math, asked by aryamanchaudhary62, 1 month ago

1/√4-√3= ? please answer... I need this one​

Answers

Answered by bhavyaupputuri6
1

Step-by-step explanation:

the answer is 2+√3

please mark as brainliest

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

 \sf{ \frac{1}{ \sqrt{4} -  \sqrt{3}  } } \\

 \bf \underline{To find-} \\

\textsf{Rationalising the denominator.}\\

 \bf \underline{Solution-} \\

\textsf{Given fraction,}\\

 \sf{ \frac{1}{ \sqrt{4} -  \sqrt{3}  } } \\

\textsf{The denominator is √4 - √3.}\\

\textsf{We know that}\\

\textsf{Rationalising factor of √a - √b = √a + √b.}\\

\textsf{Therefore, the rationalising factor of √4 - √3 = √4 + √3.}\\

\textsf{On rationalising the denominator them}\\

 \sf{ \Rightarrow \:  \frac{1}{ \sqrt{4}  -  \sqrt{3} }   \times  \frac{ \sqrt{4} +  \sqrt{3}  }{ \sqrt{4}  +  \sqrt{3} } } \\

 \sf{ \Rightarrow \:  \frac{1( \sqrt{4} +  \sqrt{3}  )}{( \sqrt{4}  -  \sqrt{3})( \sqrt{4}  +  \sqrt{3})  } } \\

 \sf{ \Rightarrow \:  \frac{\sqrt{4} +  \sqrt{3}  }{( \sqrt{4}  -  \sqrt{3})( \sqrt{4}  +  \sqrt{3})  } } \\

\textsf{Now, comparing the denominator with (a-b)(a+b), we get}\\

\textsf{ \: \: \: \: \: a = √4 and b = √3.}\\

\textsf{Using identity (a-b)(a+b) = a²-b², we get}\\

 \sf{ \Rightarrow \: \frac{ \sqrt{4}  +  \sqrt{3} }{( \sqrt{4} {)}^{2}   - ( \sqrt{3}  {)}^{2} } } \\

 \sf{ \Rightarrow \: \frac{ \sqrt{4}   + \sqrt{3} }{4 - 3} } \\

 \sf{ \Rightarrow \: \frac{ \sqrt{4} +  \sqrt{3}  }{1} } \\

 \sf{ \Rightarrow \: \sqrt{4}   +  \sqrt{3} } \\

 \bf \underline{Hence, the\: denominator \: is \: rationalised.} \\

Similar questions