1+4√3i find the square root of complex numbers
Answers
Answered by
5
Answer:
± (2 + √3i)
Step-by-step explanation:
Let 1 + 4√3i = (a + bi)² → √(1 + 4√3i) = a + bi
=> 1 + 4√3i = a² + b²i² + 2abi
=> 1 + 4√3i = a² - b² + 2abi
Real number RHS = real number LHS
=> 1 = a² - b²
Same for imaginary numbers,
=> 4√3 = 2ab → 2√3 =ab → 2√3/a = b
Hence,
=> 1 = a² - b² → 1 = a² - (2√3/a)²
=> a² = a⁴ - 12 → a⁴ - a² - 12 = 0
=> a⁴ - 4a² + 3a² - 12 = 0
=> a²(a² - 4) + 3(a² - 4) = 0
=> (a² - 4)(a² + 3) = 0
=> a = ± 2 or a = √3i, it is better to ignore a = √3i, after all we will get same result.
So, b = ± 2√3/2 = ± √3
Hence,
a + bi = √(1 + 4√3i)
2 + √3i or - 2 - √3i = √(1 + 4√3i)
2 + √3i or - (2 + √3i) = √(1 + 4√3i)
± (2 + √3i) = √(1 + 4√3i)
Similar questions