1-4+9-16+25-....+9801-10000=
Answers
Answered by
1
Answer:
- 5050
Step-by-step explanation:
1-4+9-16+25-....+9801-10000 = ( 1+9+25-....+9801 ) - ( 4+16+36....+ 10000 )
= ( 1² + 3² + 5² + .... + 99²) - ( 2² + 4² + 6² + 100²)
= ( 1² + 3² + 5² + .... + 99²) - 4 ( 1² + 2² + 3² + 50²) = S1 - 4S2
OddSum =>
(Sum of Squares of all 2n numbers) - (Sum of squares of first n even numbers =
2n*(2n+1)*(2*2n + 1)/6 - 2n(n+1)(2n+1)/3 =
2n(2n+1)/6 [4n+1 - 2(n+1)] =
n(2n+1) * (2n-1)/3 =
n(2n+1)(2n-1)/3
for S1 , n = 50
S1 = 50x101x99/3 = 50x101x33
4S2 = 4n(n+1)(2n+1)/6 = 4x50x51x101/6 = 34x101x50
the required sum = 101x50(33 - 34) = - 50x101 = - 5050
Similar questions