Physics, asked by rittiksoninke, 11 months ago

1.4 kj per second per squaremetre is not equal to......option is .....(A) 1.4×10^3 W/m^2...........(B) 0.14 w/cm^2.....(C) 1.4×10^-4 kw/cm^2..........(D) 140w/cm^2​

Answers

Answered by dheerajk1912
8

Given:

 \mathbf{A\ quantity\ =1.4\ \ \dfrac{kJ}{s.m^{2}}}

To Find:

Express in some other unit.

Solution:

We know some standard conversion which are given that:

⇒      \mathbf{1\ \dfrac{J}{s}= 1\ W}

⇒     \mathbf{1\ \dfrac{kJ}{s}= 1\ kW=10^{3}\ W}

⇒     \mathbf{1\ m^{2}=10^{4}\ cm^{2}}

Now come to question:

\mathbf{Quantity\ =1.4\ \ \dfrac{kJ}{s.m^{2}}}

Above can be written as:

\mathbf{Quantity\ =1.4\ \ \dfrac{kW}{m^{2}}}

Above can be written as:

\mathbf{Quantity\ =1.4\times 10^{3} \ \dfrac{W}{m^{2}}}           (Which is same as option A)

\mathbf{Quantity\ =\dfrac{1.4\times 10^{3}}{10^{4}} \ \dfrac{W}{cm^{2}}}

On simplify:

\mathbf{Quantity\ =0.14 \ \dfrac{W}{cm^{2}}}               (Which is same as option B)

Again consider the term:

\mathbf{Quantity\ =1.4\ \ \dfrac{kW}{m^{2}}}

Above can be written as:

\mathbf{Quantity\ =\dfrac{1.4}{10^{4}}\ \ \dfrac{kW}{cm^{2}}}

On simplify above:

\mathbf{Quantity\ =1.4\times 10^{-4}\ \ \dfrac{kW}{cm^{2}}}        (Which is same as option C)

Means:

\mathbf{1.4\  \dfrac{kJ}{s.m^{2}}} is not equal to option D.

Similar questions