Math, asked by ajstefi, 9 months ago

1/4 of the boys and 1/6 of the girls in the class are overweight. Given that 1/5 of the class is overweight, find the ratio of the number of boys to the number of girls in the class.​

Answers

Answered by Skyllen
34

   \bf\: \underline{\red{GIVEN }}

  • 1/4 of the boys and 1/6 of the girls are overweighted.
  • 1/4 of boys + 1/6 of girls = 1/5.

  \bf\: \underline{\red{TO \: FIND}}

  • Ratio of number of boys and girls in class.

Let the total boys in class be x

and total girls in class be y.

Now,

 \sf \implies \:  \dfrac{1}{4}  \: of \: boys =  \dfrac{1}{4}  \:  of \:   \bf{x=  \dfrac{x}{4} }

 \sf \implies \:  \dfrac{1}{6} of \: girls =  \dfrac{1}{6} \: of \:  y =   \bf{\dfrac{y}{6}  }

According to question,

 \bf \implies \: (x + y) \times  \dfrac{1}{5}  =  \dfrac{x}{4}  +  \dfrac{y}{6}

 \sf \implies \:  \dfrac{x + y}{5}  =  \dfrac{6x + 4y}{24}

 \sf \implies \: 24(x + y) = 5(6x + 4y)

 \sf \implies \: 24x + 24y = 30x + 20y

 \sf \implies \: 30x - 24x = 24y  -  2y

 \sf \implies \: 6x = 4y

 \large \implies \boxed {\boxed {\tt \blue {  \dfrac{x}{y}  =  \dfrac{2}{3} }}}

 \bf \therefore \: \underline{2/3 \:  is \: the \:  required \: ratio \: of \: boys \:  and \:  girls}

Answered by Anonymous
105

\bold{\large{\purple{\underbrace{Answer \implies 2:3}}}}

\sf\large{\underline{\underline{\red{Given:}}}}

\sf{\longrightarrow \dfrac{1}{4}th\:of\:the\:boys\:and\:\dfrac{1}{6}th \:of \:the\:girls}\sf{ \: \: \: \: \: in\:the\:class\:are\:overweight.}

\sf{And,}

\sf{\longrightarrow \dfrac{1}{5}th\:of\:the\: class \:is\:overweight}

\sf\large{\underline{\underline{\red{To\:Find:}}}}

\sf{\longrightarrow Ratio\:of\:boys\:with\:respect\:to\:number}\sf{of\:girls\:in\:class......?}

\sf\large{\underline{\underline{\red{Let:}}}}

\sf{Total\:number\:of\:boys = 'x'}

\sf{Total\:number\:of\:girls = 'y'}

\sf{Also,}

\sf{Overweight\:of\:Boys = \dfrac{1}{4}th\:of\:x = \dfrac{x}{4}}

\sf{Overweight\:of\:Girls = \dfrac{1}{6}th\:of\:x = \dfrac{x}{6}}

\sf{So,}

\sf{ \: \: \: \: \: Overweight\:of\:class = x + \dfrac{y}{5}}

\sf\large{\underline{\underline{\red{According\:To\:Question:}}}}

\sf{\fbox{\green{\implies Overweight\:(Boys) + Overweight\:(Girls) = Overweight \:(Class)}}}

\sf{\implies (\dfrac{x}{4} + \dfrac{y}{6}) = (x + \dfrac{y}{5})}

\sf{\implies (\dfrac{3x + 2y }{12}) = (x + \dfrac{y}{5})}

\sf{\implies (15x + 10y) = (12x + 12y)}

\sf{\implies (3x = 2y)}

\sf{\implies x = \dfrac{2y}{3}}

\sf{\implies \dfrac{x}{y} = \dfrac{2}{3}}

\sf{\implies x:y = 2:3}

\sf\large{\underline{\underline{\red{Hence:}}}}

\bold{\underline{Ratio\:of\:no.\:of\:boys\:to\:the\:no.}}\bold{\underline{of\:girls\:in\:the\:class}}

\bold{\underline{\fbox{= 2:3}}}

Similar questions