Math, asked by himashasontake, 2 months ago

(1) 40 m
(2) 100 m
(3) 140 m
(4) 400 m
11. The length of a rectangular field is double its width. If the width is 100 m, what will be its area?
)
(
) sq
12. The area of a square court is 196 sq m. The perimeter is
(1) 40 m
(2) 60 m
(3) 50 m
(4) 56 m​

Answers

Answered by SachinGupta01
7

Solution : 11

 \bf \:  \underline{Given} :

 \sf \: The \: length \: of \: a \: rectangular \: field \: is \: double \: its \: width.

 \sf \: Width \: of \: the \: rectangular  \: field =  100 \:  meter.

 \bf \:  \underline{To  \: find} :

  \sf \: We \: have \: to \: find \: it's \: area.

 \bf \: \underline{ \underline{ So, \: Let's  \: Start}}

 \sf \: If \: the \: length \: of \: the \: rectangular \: field \: is  \: double \:  its \:  width.

 \sf \: Then,

 \sf \: Length \: of  \:  the \:  field = 100 \: meter + 100 \: meter

 \sf \: So,  \: Length  \: of \:  the \:  field = 200  \: meter

 \underline{ \sf \: Now,  \: we  \: will  \: find \:  the  \: area }

 \sf \: As  \: we \:  know  \: that,

 \boxed{ \pink{ \sf \: Area \: of \: Rectangle = (Length \times Breadth)}}

 \sf \: Putting \:  the \:  values,

  \sf \: Area \: of \: Rectangle = (200 \times 100)

 \red{  \sf So, \: area \: of \: rectangular \: field = 20000 \: m^{2}}

______________________________________

Solution - 12

 \bf \:  \underline{Given} :

 \sf \: The  \: area \:  of  \: a \:  square  \: court  =  196  \: m ^{2}

 \bf \:  \underline{To  \: find} :

 \sf \: We \:  have \:  to  \: find \:  it's  \: perimeter.

  \bf \:   \underline{\underline{So, \:  let's \:  find \:  it }}

 \sf \:  We  \: know  \: that,

 \sf \: Area  \: of  \: square = Side  ^{2}

 \sf \:  \sqrt{196}  = Side  ^{2}

 \sf \:  14 = Side  ^{2}

 \sf \: Hence,  \: side  \: (S) = 14  \: meter

 \sf \: Now,  \: we  \: have \:  to \:  find  \: the  \: perimeter.

 \sf \: As  \: we \:  know,

 \boxed{  \pink{\sf \: Perimeter  \: of  \: square = 4 \times Side}}

 \sf \:  So,

 \sf \longrightarrow \: 4 \times 14

 \sf \longrightarrow \: 56 \: meter

 \sf \: \red{So,  \:perimeter  \: of  \: the  \: square = 56  \: meter.}

Similar questions
Math, 2 months ago