1+√48 upon 5 √3+4√2-√72-√108+√8+2=a+b√3
Answers
Answered by
8
Answer:
14 + 9 √3
Step-by-step explanation:
Given 1+√48 upon 5 √3+4√2-√72-√108+√8+2=a+b√3
So 1 + √48 / 5 √3+4√2-√72-√108+√8+2
1 + 4√3 / 5√3 + 4√2 - 6√2 - 6√3 + 2√2 + 2
1 + 4√3 / -√3 + 2
1 + 4√3 / 2 - √3
Now rationalizing the denominator we get
1 + 4√3 / 2 - √3 x 2 + √3 / 2 + √3
(1 + 4√3)(2 + √3) / 4 - 3 (because (a + b)(a - b) = a^2 - b^2
2 + 8√3 + √3 + 12 / 1
14 + 9√3
So now it is in the form of a + b√3
Answered by
24
GIVEN :-
To Find:-
The Value of a and b.
Now,
First we will will simplify it and then we will Rationalise it
Now Rationalising it.
.
Hence, a = 14, b = 9.
Similar questions
History,
6 months ago
Chinese,
6 months ago
Math,
6 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago