1. 4a (3α +7b) . find each of the following products:
Answers
Answer:
By distributive law of multiplication over addition, we have:
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2 +28ab)
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2 +28ab)Hence, 4a(3a+7b)=12a
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2 +28ab)Hence, 4a(3a+7b)=12a 2
By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2 +28ab)Hence, 4a(3a+7b)=12a 2 +28ab.
Step-by-step explanation: