Math, asked by kusumagrawal1999, 1 month ago

1. 4a (3α +7b) . find each of the following products:

Answers

Answered by ranjeetcarpet
1

Answer:

By distributive law of multiplication over addition, we have:

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2 +28ab)

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2 +28ab)Hence, 4a(3a+7b)=12a

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2 +28ab)Hence, 4a(3a+7b)=12a 2

By distributive law of multiplication over addition, we have:p×(q+r)=(p×q)+(p×r)where p,q and r be three monomials.∴ 4a(3a+7b)=(4a×3a)+(4a×7b)=(12a 1+1 +28ab) [∵a m ×a n =a m+n ]=(12a 2 +28ab)Hence, 4a(3a+7b)=12a 2 +28ab.

Answered by abhi52329
1

Step-by-step explanation:

4a(3a + 7b) \\  = 12 {a}^{2}  + 28ab

Similar questions