1+4sinx+3cosx=?IITian needed
Answers
Answered by
8
Hey there!!!
=========================
1 + 4 sinx + 3 cosx
multiplying and dividing by 5 :
= 5 (1/5 + 4/5 sinx + 3/5 cos x)
Let y = sin^-1(4/5)
=> y = cos^-1(3/5)
= 5(1/5 + siny . sinx + cosy . cosx)
= 5(1/5 + cos (x -y) ) ......[ using identity, cos(x-y)= cosx . cosy + sinx . siny]
= 1 + 5 cos(x-y)
= 1 + 5 cos ( x - cos^-1(3/5) )
=================================
Hope it helps!!!
=========================
1 + 4 sinx + 3 cosx
multiplying and dividing by 5 :
= 5 (1/5 + 4/5 sinx + 3/5 cos x)
Let y = sin^-1(4/5)
=> y = cos^-1(3/5)
= 5(1/5 + siny . sinx + cosy . cosx)
= 5(1/5 + cos (x -y) ) ......[ using identity, cos(x-y)= cosx . cosy + sinx . siny]
= 1 + 5 cos(x-y)
= 1 + 5 cos ( x - cos^-1(3/5) )
=================================
Hope it helps!!!
superfy67:
Brainly
Answered by
13
1 + 4sinx +3cosx = ?
Actually
-√(a²+ b²) ≤ asinx + bcosx ≤ √(a² + b²)
It means , range of value of (asinx+bcosx) € [-√(a²+b²), √(a²+b²)]
So, the value of
4sinx + 3cosx belongs to [ -√(4²+3²),√(4²+3²)] e.g [-5, 5]
Hence, value of 1+4sinx+3cosx €[-4,6]
-4 ≤ 1+4sinx + 3cosx ≤ 6
Hence, all real number belongs to inerval [-4,6] are the values of (1+4sinx+3cosx)
Actually
-√(a²+ b²) ≤ asinx + bcosx ≤ √(a² + b²)
It means , range of value of (asinx+bcosx) € [-√(a²+b²), √(a²+b²)]
So, the value of
4sinx + 3cosx belongs to [ -√(4²+3²),√(4²+3²)] e.g [-5, 5]
Hence, value of 1+4sinx+3cosx €[-4,6]
-4 ≤ 1+4sinx + 3cosx ≤ 6
Hence, all real number belongs to inerval [-4,6] are the values of (1+4sinx+3cosx)
Similar questions