Math, asked by adarshsatishsingh333, 5 months ago


1/4x²+11.dy/dx. please solve it fast ​

Answers

Answered by Anonymous
4

Solution:-

Given

 \sf \to \: \int   \bigg( \dfrac{1}{4}  {x}^{2}  + 11  \bigg)dx\\

Now

 \to  \sf \int \dfrac{1}{4}  {x}^{2} dx +  \int11dx \\

 \sf \to \:  \dfrac{1}{4}  \int {x}^{2} dx + 11x  + c\\

 \to  \sf  \dfrac{1}{4}  \bigg( \dfrac{ {x}^{2 + 1} }{2 + 1}  \bigg) + 11x + c

 \sf \to \:  \dfrac{1}{4}  \times  \dfrac{ {x}^{3} }{3}  + 11x + c

 \sf \to \:  \dfrac{ {x}^{2} }{12}  + 11x + c

Answer

\sf \to \:  \dfrac{ {x}^{2} }{12}  + 11x + c

Some properties

 \sf \to \:  \int {x}^{n} dx =  \dfrac{ {x}^{n + 1} }{n + 1}  \\

 \to \rm \:  \int \dfrac{1}{x} dx  =  log_{e} |x|  + c \\

 \sf \to \int {e}^{x} dx =  {e}^{x}  + c \\

 \sf \to \:  \int {a}^{x}  =  \dfrac{ {a}^{x} }{ log_{e}a}  + c \\

Answered by Anonymous
44

Refer to the attachment.

Attachments:
Similar questions