Math, asked by hockeymunikirati, 1 year ago

{1/5÷1÷/5 of 1/5}/{1/5of 1/5÷1/5}

Attachments:

Answers

Answered by ryan567
17
\huge{\Blue{heya\:mate}}

\large{1/5÷1/5 of 1/5}/{1/5of 1/5÷1/5}

\large{1/5*5* 1/5)/(1/5of 1/5*5)}

\huge{(1/5)/(1/25*5)}

\huge{1/5*5*25}

\huge{<br />25}

&lt;marquee&gt;&lt;i&gt;&lt;b&gt;
HOPE IT HELPS

ryan567: hnn u r right bro
Hemanta555: if it is helpful then press the like button and let me have some points.....
ryan567: bro same goes for you I just need thamku
ryan567: THANK you
hockeymunikirati: I am totally confuse what is answer 25 or 1
sonufor: hi
Hemanta555: it is 25 not 1
ryan567: ok
Hemanta555: hockeymunikirati........don't be confused
hockeymunikirati: Ok
Answered by SteffiPaul
4

Given,

  • {1/5÷1/5 of 1/5}/{1/5of 1/5÷1/5} is given.

To find,

  • We have to simplify the given expression.

Solution,

{1/5÷1/5 of 1/5}/{1/5of 1/5÷1/5} can be simplified as 25.

We can simplify the given expression by using the BODMAS rule

                {1/5÷1/5 of 1/5}/{1/5of 1/5÷1/5}

Solving 'of' first, we get

                {1/5÷1/25}/{1/25÷1/5}

Now, solving division by changing division into multiplication by reciprocating, we get

                {1/5÷1/25}/{1/25÷1/5}

                {1/5 * 25/1}/{1/25*5/1}

                {1/5 * 25/1}/{1/25*5/1}

                   {5}/{1/5}

                    5 * 5

                     25

Hence, {1/5÷1/5 of 1/5}/{1/5of 1/5÷1/5} can be simplified as 25.

Similar questions