Math, asked by TbiaSupreme, 1 year ago

1/√5ˣ²-4,Integrate the given function defined on proper domain w.r.t. x.

Answers

Answered by hukam0685
1

Dear Student,

Answer:\int\frac{1}{\sqrt{5x^{2} -4 } } dx=\frac{1}{\sqrt{5} } log(x+\sqrt{x^{2}-(\frac{2}{\sqrt{5} }) ^{2}  } +C

Solution: ∫1/√5x²-4 dx =

formula used

\int\frac{1}{\sqrt{x^{2} -a^{2} }  } dx=log(x+\sqrt{x^{2}-a^{2}  })+C

so we have to convert the given function in the above mentioned form,by taking √5 common from denominator

\int{\frac{1}{ \sqrt{5}( \sqrt{ {x}^{2} - ( { \frac{2}{ \sqrt{5} } })^{2} } }} dx

here a = 2/√5

Apply formula

\int\frac{1}{\sqrt{5} } \frac{1}{\sqrt{x^{2} -(\frac{2}{\sqrt{5} }) ^{2} } }dx\\ =\frac{1}{\sqrt{5} } log(x+\sqrt{x^{2}-(\frac{2}{\sqrt{5} } )^{2}  })+C\\ \\

or =\frac{1}{\sqrt{5} } log(x+\sqrt{x^{2}-\frac{4}{5}  } +C\\ \\= \frac{1}{\sqrt{5} } log(x+\sqrt{\frac{5x^{2}-4 }{5} }+C

Hope it helps you.



Thanks for asking such a nice question.


abhi178: plz correct it
rohitkumargupta: correct it your code is incorrect
hukam0685: I had edit it through website,it shows correct their.but in app there is some problem.What i had to do!
Answered by abhi178
3
we have to find out \int{\frac{1}{\sqrt{5x^2-4}}}\,dx

\int{\frac{1}{\sqrt{5x^2-4}}}\,dx

=\int{\frac{1}{\sqrt{5}}\frac{1}{\sqrt{x^2-4/5}}}\,dx

= \frac{1}{\sqrt{5}}\int{\frac{1}{\sqrt{x^2-\{\sqrt{\frac{4}{5}}\}^2}}}\,dx

now use formula,
\int{\frac{1}{\sqrt{x^2-a^2}}}\,dx=log|x+\sqrt{x^2-a^2}|+C

= \frac{1}{\sqrt{5}}log|x+\sqrt{x^2-\frac{4}{5}}|+C

hence, answer is /1√5 log|x + √(x² - 4/5)| +C

hukam0685: oh thanks ,i had applied wrong formula at last,please send an edit option
abhi178: sure
hukam0685: thank you
Similar questions