Math, asked by varshakrishnabhagya, 1 month ago

1,5,3 , x and 8 are in proportion then x is equal to​

Answers

Answered by telex
1724

Appropriate Question :-

1.5, 3, x and 8 are in proportion. Then x is equal to ?

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Solution :-

Given Information :-

  • Extreme₁ value ➢ 1.5
  • Extreme₂ value ➢ 8
  • Mean₁ value ➢ 3
  • Mean₂ value ➢ 'x'

To Find :-

  • Value of Mean₂ i.e., 'x'

Concept :-

  • Ratio & Proportions

Formula Used :-

  •   \boxed{ \boxed{ \bf{ \blue{product \: of \: means}  = \green{ product \: of \: extremes}}}}

Explanation :-

  • Simply substitute the given values in the formula mentioned above, after some minute calculations, we'll get the answer, i.e., value of Mean₂ ( 'x' ). So now, let's proceed towards our calculation.

Calculation :-

Using the Formula,

  \boxed{ \boxed{ \bf{ \blue{product \: of \: means}  = \green{ product \: of \: extremes}}}}

Substituting the values given in the formula mentioned above, We get,

   \rm :\implies \rm{ \blue{product \: of \: means}  = \green{ product \: of \: extremes}}

Substituting the values, We get,

   \rm :\implies \rm{ \blue{Mean_1 × Mean₂}  = \green{ Extreme_1 × Extreme₂}}

Substituting given values,

   \rm :\implies \rm{ \blue{3 × x}  = \green{ 1.5 × 8}}

Transposing 3 in Left Hand Side of the equation, to Right Hand Side of the equation, We get,

 \rm :  \implies \rm{ \blue{x} =  \green{ \dfrac{1.5 \times 8}{3} }}

Cancelling & Calculating further, We get,

 \rm :  \implies \rm{ \blue{x} =  \green{ \dfrac{ \cancel{1.5 }\times  \cancel{8} \:  \:  \tiny{4}}{ \cancel{3} \:  \:    \tiny \cancel2} }}

Therefore, We get,

 \rm :  \implies \rm{ \blue{x} =  \green{4}}

 \rm \therefore \:  \blue{mean_2} = \red 4 \\   \rm\therefore \: \boxed{ \boxed{ \bf\blue x =  \red4}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Final Answer :-

  • The value of 'x' is 4

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Note :-

Please scroll from right to left to see the whole solution.

Answered by isha00333
5

Note: error in question instead of 1,5 it should be 1.5

Given: 1.5,3,x,8 are in proportion.

To find: the value of x.

Solution:

Know that,

Product of extremes = product of means

\[\begin{array}{l}3 \times x = 1.5 \times 8\\ \Rightarrow 3x = 12.0\\ \Rightarrow x = \frac{{12}}{3}\\ \Rightarrow x = 4\end{array}\]

Hence, the value of x is 4.

Similar questions