Math, asked by UmraNaushad, 9 months ago

1
5. In an A.P., if pth term is
1
and qih term is -, prove that the sum of first pa
9
P
terms is 1 (pq +1), where p #q.
2
10​

Answers

Answered by singhprince0457
5

Answer:

please mark meas brainliest

Step-by-step explanation:

Given pth term = 1/q

a + (p - 1)d = 1/q

aq + (pq - q)d = 1  --- (1)

Similarly,  

ap + (pq - p)d = 1  --- (2)

From (1) and (2), we get

aq + (pq - q)d = ap + (pq - p)d  

aq - ap = d[pq - p - pq + q]

a(q - p) = d(q - p)

Therefore, a = d

Equation (1) becomes,

dq + pqd - dq = 1  

d = 1/pq

Hence a = 1/pq

Consider, Spq = (pq/2)[2a + (pq - 1)d]

                       = (pq/2)[2(1/pq) + (pq - 1)(1/pq)]

       

                       = (1/2)[2 + pq - 1]

         

                       = (1/2)[pq + 1]

____________________________________________________

☺ ☺ ☺ Hope this Helps ☺ ☺ ☺

Similar questions