1/(5cosx+12sinx+12)
solve the maximum and minimum value
Answers
Answered by
0
-1≤cosx≤1
-5≤5cosx≤5 {eqn-1}
-1≤sinx≤1
-12≤12sinx≤12 {eqn-2}
{eqn-1}+{eqn-2}
-17≤5cosx+12sinx≤17
-5≤5cosx+12sinx+12≤29
-5≤5cosx≤5 {eqn-1}
-1≤sinx≤1
-12≤12sinx≤12 {eqn-2}
{eqn-1}+{eqn-2}
-17≤5cosx+12sinx≤17
-5≤5cosx+12sinx+12≤29
Answered by
0
Answer:
Step-by-step explanation:
5sinx+12cosx=13
differentiate with respect to x
5(cosx)+12(-sinx)=0
5cosx-12sinx=0
Similar questions