Math, asked by BellaStark1741, 8 months ago

1+6¹+6².....+6¹⁰⁰ find unit digit

Answers

Answered by shadowsabers03
4

The unit digit of all numbers written in the form 6^n where n\in\mathbb{N} is always 6.

\longrightarrow6^n\equiv6\pmod{10}

We're asked to find unit digit of the series 1+6^1+6^2+6^3+\,\dots\,+6^{100}.

Each term in the series except 1 has unit digit 6.

\longrightarrow6^1\equiv6\pmod{10}

\longrightarrow6^2\equiv6\pmod{10}

\longrightarrow6^3\equiv6\pmod{10}

\vdots

\longrightarrow6^{100}\equiv6\pmod{10}

There are 100 powers of 6 in this series.

Hence the unit digit of the sum will be given by,

\longrightarrow1+6^1+6^2+6^3+\,\dots\,+6^{100}\equiv1+\underbrace{6+6+\,\dots\,+6}_{100\ terms}\pmod{10}

\longrightarrow1+6^1+6^2+6^3+\,\dots\,+6^{100}\equiv1+6\times100\pmod{10}

\longrightarrow1+6^1+6^2+6^3+\,\dots\,+6^{100}\equiv601\pmod{10}

Since 601\equiv1\pmod{10},

\longrightarrow\underline{\underline{1+6^1+6^2+6^3+\,\dots\,+6^{100}\equiv1\pmod{10}}}

Hence 1 is the unit digit.

Similar questions