Math, asked by chandnigambhir, 1 year ago

1/7 power 4-2x = root 7 find the value of x ​

Answers

Answered by praneethks
78

Explanation:-

 \frac{1}{{7}^{4 - 2x}} =  \sqrt{7} =  >  {7}^{ - (4 - 2x)} =  {7}^{ \frac{1}{2} } =  >

 {7}^{2x - 4} =  {7}^{ \frac{1}{2}} =  > 2x - 4 =  \frac{1}{2} =  >

4x - 8 = 1 =  > 4x = 8 + 1 = 9 =  >

4x = 9 =  > x =  \frac{9}{4}

Hope it helps you.

Answered by dualadmire
6

The value of x ​is 9 / 4.

Given: ( 1 / 7 )^( 4 - 2x ) = √7

To Find: The value of x. ​

Solution:

  • We know that if the base number is the same in an equation then the powers are also equal.

       For example: If p^q = p^r, then q = r.

Coming to the numerical, we have;

       ( 1 / 7 )^( 4 - 2x ) = √7

  ⇒  ( 7 )^(-(4 - 2x))  =  ( 7 )^1/2

Since the base ( i.e. 7 ) is the same on both sides of the equation, so we can equate the powers.

  ⇒   - ( 4 - 2x )  =  1/2

  ⇒   2x - 4 = 1/2

  ⇒   4x -  8 = 1

  ⇒   4x = 9

  ⇒    x = 9/4

Hence, the value of x ​is 9 / 4.

#SPJ2

                 

Similar questions