Math, asked by nanan153, 1 year ago

1/√9-√8 is equals to
a) 1/2 3-2√2
b) 3+1/2√2
c) 3-2√2
d) 3+2√2

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{\dfrac{1}{\sqrt{9}-\sqrt{8}}}

\underline{\textbf{To find:}}

\mathsf{Equivalent\;of\dfrac{1}{\sqrt{9}-\sqrt{8}}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{1}{\sqrt{9}-\sqrt{8}}}

\textsf{Multiply both numerator and denominator by cojugate}

\mathsf{of\;\sqrt{9}-\sqrt{8}}

\mathsf{=\dfrac{1}{\sqrt{9}-\sqrt{8}}{\times}\dfrac{\sqrt{9}+\sqrt{8}}{\sqrt{9}+\sqrt{8}}}

\mathsf{=\dfrac{\sqrt{9}+\sqrt{8}}{(\sqrt{9})^2-(\sqrt{8})^2}}

\mathsf{=\dfrac{\sqrt{9}+\sqrt{8}}{9-1}}

\mathsf{=\dfrac{\sqrt{9}+\sqrt{8}}{1}}

\mathsf{=\sqrt{9}+\sqrt{8}}

\mathsf{=\sqrt{9}+\sqrt{4}\sqrt{2}}

\mathsf{=3+2\sqrt{2}}

\implies\boxed{\mathsf{\dfrac{1}{\sqrt{9}-\sqrt{8}}=3+2\sqrt{2}}}

\underline{\textbf{Answer:}}

\textsf{Option (d) is correct}

\underline{\textbf{Concept used:}}

\boxed{\begin{minipage}{6cm}$\\\mathsf{Conjugate\;of\;\sqrt{a}+\sqrt{b}\;is\;\sqrt{a}-\sqrt{b}}\\$\end{minipage}}

#SPJ3

Similar questions