Math, asked by aniruddh6, 1 year ago

1/(a-b)(a-c)+1/(b-c)(b-a)+1/(c-a)(c-b)

Answers

Answered by kaira6
21
this is ur answer of ur question
Attachments:
Answered by adventureisland
27

\frac{1}{(a-b)(a-c)}+\frac{1}{(b-c)(b-a)}+\frac{1}{(c-a)(c-b)}=0

Solution:

Given,

\frac{1}{(a-b)(a-c)}+\frac{1}{(b-c)(b-a)}+\frac{1}{(c-a)(c-b)}

Simplifying the equation we get,

\Rightarrow \frac{1}{(a-b)(a-c)}+\left(\frac{1}{(b-c)(-(a-b))}\right)+\left(\frac{1}{(-(a-c))(-(b-c))}\right)

\Rightarrow \frac{1}{(a-b)(a-c)}-\frac{1}{(b-c)(a-b)}+\frac{1}{(a-c)(b-c)}

\Rightarrow \frac{(b-c)-(a-c)+(a-b)}{(a-b)(a-c)(b-c)}

Grouping the terms,

\Rightarrow \frac{b-c-a+c+a-b}{(a-b)(a-c)(b-c)}

\Rightarrow \frac{0}{(a-b)(a-c)(b-c)} = 0

(0 divided by any number is 0)

Similar questions