Math, asked by ssmhh2006, 2 months ago

1/a+b+x=1/a+1/b+1/x;(a+bis not equal to zero by quadratic equation​

Answers

Answered by abhi569
2

Step-by-step explanation:

   \implies\sf{ \frac{1}{a} + \frac{1}{b} + \frac{1}{x} = \frac{1}{a + b + x}} \\ \\

 \large{\implies \sf{ \frac{1}{a} + \frac{1}{b} = \frac{1}{a + b + x} - \frac{1}{x}} } \\ \\  \implies\sf{ \frac{a+ b}{ab} = \frac{x - (a + b + x)}{x(a+ b + x)} } \\ \\  \implies \sf{ \frac{a + b}{ab} = \frac{ - (a + b)}{x(a+ b+ x)} } \\ \\  \implies\sf{ \frac{1}{ab} = \frac{-1}{xp + xq + {x}^{2} } } \\ \\ \implies \sf{xa + xb+ {x}^{2} = - ab}\\ \\\implies \sf{xa +ab+ xb + {x}^{2} = 0} \\ \\  \implies\sf{ a(x + b) + x(b + x) = 0 } \\ \\  \implies\sf{(x + b)(x + a) = 0} \\

x = - a or x = - b

Similar questions