Math, asked by vithalpargewar12, 10 months ago

1÷a+b+x=1÷a+1÷b+1÷x find the(roots of the question)solution of this question ​

Answers

Answered by sanketj
1

 \frac{1}{a + b + x}  =  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{x}  \\  \frac{1}{a + b + x}  -  \frac{1}{x}  =  \frac{a + b}{ab}  \\  \frac{x - a - b - x}{ {x}^{2}  + (a + b)x}  =  \frac{a + b}{ab}  \\  \frac{ - (a + b)}{ {x}^{2}  + (a + b)x}  =  \frac{(a + b)}{ab}  \\  - ab =  {x}^{2}  + (a + b)x \\  {x}^{2}  + ax + bx + ab = 0 \\ x(x + a) + b(x + a) = 0 \\ (x + a)(x + b) = 0

x + a = 0 or x + b = 0

x = -a or x = -b

Hence, x = -a or x = -b are the roots of the given equation.

Similar questions